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a b s t r a c t

An analogy is pointed out between a polymer chain fluctuating in a two-dimensional
nematic background and a freely floating material line buffeted by a two-dimensional
turbulent fluid in the inertial (Kraichnan) regime. Under certain conditions, the back-
reaction of the line on the turbulent flow may be neglected. The fractal exponent related
to the size–contour relation of the material line is connected to a ‘‘nematic’’ correlation
function in the bulk.

© 2016 Elsevier B.V. All rights reserved.

Theories of turbulence generally focus on the properties of correlation functions rather than make an attempt to solve
the Navier–Stokes equation as such [1–3]. If we restrict ourselves to two dimensions [2D], it is the inertial regimes that
are important at asymptotically high Reynolds numbers, at scales larger than the Kraichnan dissipation length λk [4,5].
These regimes have been studied experimentally in soap films flowing under gravity in set-ups that allow for continuous
operations [6]. An interesting correlation function was measured a decade ago [7]. A thin column of water was injected in a
turbulent soap film: this could be viewed as a material line being deformed by the 2D turbulence. Amarouchene and Kellay
succeeded in measuring the configurational statistics of the evolving fluctuating line [7]. Here, I attempt to connect the line
correlation function to that of the bulk turbulence albeit under conditions without symmetry breaking.

The problem is reminiscent of a polymer chain being deformed by a nematic matrix in two dimensions [8,9]. Let us recall
the argumentation used to connect the polymer correlation function with the underlying nematic correlations in the limit
of strong coupling. The latter are expressed in terms of the director−→n (−→r ) ≡ exp[i θ(−→r )]where the angle θ(−→r ) is defined
in the 2D complex plane as a function of −→r

⟨
−→n (−→r ) ·

−→n (−→r
′
) ⟩n = ⟨ eiθ(

−→r )e−iθ(−→r ′
)
⟩n v

−→r −
−→r

′
−η . (1)

Here, the average is that defined in thermodynamic equilibriumand the orientational order decays algebraically [9], as iswell
known. The 2D wormlike chain embedded in the nematic is defined by z(s) = x(s)+ i y(s)where s is a point on the contour
from one end (0 ≤ s ≤ N). Because of the strong coupling, the chain is slaved to the nematic. The effective Hamiltonian H
is a functional of z and −→n and consists of the bending energy of the chain, the free energy of the fluctuating nematic and a
term signifying the strong coupling of the chain to the nematic as discussed by Nelson et al. [8,9] (for a qualitative treatment
of the enslavement, see the Appendix). We have

dz
ds

= eiθ(s) (2)
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where the right-hand-side is conveniently regarded as a functional of z(s). We therefore obtain

⟨ |z(s)− z(s′)|2 ⟩nc =

 N

0
ds
 N

0
ds′

 eiθ [z(s)]e−iθ[z(s′)]
 

nc
. (3)

The index nc denotes that two averages have been employed within a canonical ensemble, that is including a factor
exp(−H/kBT ) where kB is Boltzmann’s constant and T is the temperature. One average is a functional integration over
fluctuations in the nematic (n), the other is a functional integration over chain configurations (c). Inserting Eq. (1) into
Eq. (3), we end up with an integral equation. Upon setting z(N) v Nν , we conclude that [8,9]

ν =
2

2 + η
. (4)

It is remarkable that this expression is derived without having to use the probability exp(−H/kBT ) itself [8,9]. The problem
is whether an expression akin to Eq. (4) is also valid for a material line in a 2D turbulent field.

A chain of length N and mass mc immersed in a 2D Navier–Stokes fluid behaves like an unattached, one-dimensional
flag acting on a fluid area of typical size N2. One relevant dimensionless parameter R1 = mc/N2ρf with ρf the fluid density
occurs in the theory of a singly attached flag flapping in an Euler fluid [10]. A second parameter R2 may be viewed as a non-
dimensionalized bending energy. The bending energy Ub is of order BN/R2

c where Rc is the typical radius of curvature Rc of
the bent flag and B is the bending force constant. The bending energy is at most B/N so that the elastic energy density scales
as B/N3. We have to compare this with the fluid Reynolds stress ρfU2 where U is a typical velocity of the flag with respect to
some background at the far field. We therefore have R2 = B/ρfU2N3. We wish to consider the limit where the back reaction
of the flag on the fluid is negligible. Von Karman vortices arising at the two ends (when the flag is free) have little effect when
R2 ≫ R1 [10,11]. On the other hand, an energy criterion R2 ≪ 1 has been introduced by de Gennes [12] to ascertain when
passive advection is valid in three dimensions. This criterion has also been applied to 2D turbulent flows [13]. A regimewith
both R2 ≫ R1 and R2 ≪ 1 is easily realizable according to Fig. 3 of Ref. [10].

Of course, a Navier–Stokes fluid is definitely not an Euler fluid even as the kinematic viscosity goes to zero [14] but let
us focus on the enstrophy cascade at very high Reynolds numbers. The turbulence is stationary and homogeneous. The rate
of dissipation at scales smaller than the injection scale is χ = d⟨ω2

⟩h/dt where ⟨⟩h represents an average over an ensemble
of realizations of the vorticity ω(−→r , t) [5]. The inertial regime is here between λk and the injection scale; it is scaleless. A
material line swaying in the fluid has a viscous boundary layer of size λk along its length. At a distance l from this line, the
largest eddy must be of order l (at least if the radius of curvature Rc is not too small). But the typical time scale of all the
eddies including those in the turbulent boundary layer must be χ−1/3. If we suppose a power law for the material line holds
again: R ∼ Nνh , passive advection implies full enslavement of thematerial line to the flow in the enstrophy cascade regime. I
again stress that nowhere in the above analysis of the nematic problem leading to Eq. (4) is explicit usemade of a probability
function within a canonical ensemble. Hence, one may apply the identical argumentation to a 2D turbulent stationary state
with an unknown probability function pertaining to that state. Thus, we simply follow the above line of reasoning to write

νh =
2

2 + ηh
(5)

where the exponent is defined in terms of the hydrodynamic velocity −→v (
−→r ) ≡ v(

−→r )−→n (−→r ) which defines a ‘‘polar’’
director −→n (−→r )

⟨
−→n (−→r ) ·

−→n (−→r
′
) ⟩h v

−→r −
−→r

′
−ηh . (6)

The amplitude of the velocity vector is v(−→r ) and the index h denotes an average over an ensemble of stationary states.
The orientational correlation function given by Eq. (6) appears to have never been computed; in principle, it may hold

on general grounds in two dimensions since the Kraichnan regime is scaleless. In the experiments by Amarouchene and
Kelly [7], the soap film flows on average in the y direction under gravity. The fluctuation h(y) of the injected material
line consisting of pure water is measured in the direction perpendicular to the y axis. Thus, it is expedient to focus on the
correlation or structure functions ⟨|δh(r)|n⟩h with δh(r) ≡ h(y+ r)− h(y). For n = 2, this function scales empirically as rξn
where the exponent ξn is close to 2 at low rates of flow where the coherent vortices appearing in the 2D fluid are ordered.
At higher rates of flow, the 2D film becomes turbulent and the coherent vortices are scattered throughout the turbulent
background in a disordered manner. The exponent ξ2 ultimately reaches a value of about 1.5 continuously until anomalies
start to occur related to the integrity of the material line. In Fig. 1 of Ref. [7], the line seems to be attracted to coherent
vortices here and there.

Although this issue was not investigated, it is probably safe to posit that the line fluctuations are isotropic implying
ξ2 ≡ 2νh. Accordingly, νh would range from unity at low rates of flow to about 3/4 at high rates. The relation between the
exponent νh and ηh given by Eq. (5) can be tested purely empirically as suggested by Hamid Kellay (private communication).
In Ref. [7], the exponent ξ2 is a function of the Reynolds number but this may not mean much; the turbulence in the inertial
Kraichnan regime could be fully developed whereas the coherent vortices and their distribution could well still depend on
the viscosity of the soap film. Another potential problem in the scaling analysis is that the dimensionless coefficients R1 and
R2 may need to be renormalized if a power law for the chain size R(N) is posited. Nevertheless, the interaction between
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