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a b s t r a c t

This paper presents a reliability-based robust design approach to develop piezoelectric materials based
structural sensing systems for failure diagnostics and prognostics. A detectability measure is defined to
evaluate the performance of any given sensing system, and the sensing system design problem can be
formulated to maximize detectability for different failure modes by optimally allocating piezoelectric
materials into a target structure. This formulation can be conveniently solved within a reliability-based
robust design framework to ensure design robustness while considering the uncertainties such as those
from structure properties and operation conditions. Two case studies, that design sensor networks for
an aircraft wing panel and a power transformer structure, are employed to demonstrate the effectiveness
of the proposed methodology in developing multifunctional material sensing systems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With a growing complexity of engineered systems, failure
diagnostics techniques have been prevalently employed to pre-
vent potential catastrophic failures and improve system reliability
and safety. Real-time health diagnostics interpret data acquired
by smart sensors, and utilize these data streams in making critical
operation and maintenance decisions [1]. Enormous benefits can
be provided by effective health diagnostics activities, such as
improved system safety, reliability, and reduced costs for the
operation and maintenance of complex engineered systems.
Structure maintenance and life-cycle management is an area that
can significantly benefit from diagnostics and improved mainte-
nance practices, as unexpected system breakdowns could be pro-
hibitively expensive [2]. Thus to reduce and possibly eliminate
such problems, it is important to accurately assess the health
condition of an operating system in real time through effective
health diagnostics. Researches on condition monitoring address
these challenges by assessing system health states utilizing sen-
sory information from the functioning system [3–5]. Monitoring
of system health state (HS) changes over time provides valuable
information about the performance degradation of system

components for critical maintenance decision makings, and has
been successfully applied to many engineering systems such as
bearings [6–9], machine tools [10], power transformers [11], engi-
nes [12], aircraft wings [13], and turbines [14]. In the literature,
there are two categories of approaches in general that are often
employed for health diagnostics, machine learning techniques
and statistical inference techniques. The machine learning-based
health diagnostics approaches can further be divided into
supervised learning, unsupervised learning and semi-supervised
learning techniques. In addition to the aforementioned machine
learning-based algorithms, statistical inference-based algorithms
can also be used to classify system HSs based on statistical
distances such as Mahalanobis distance [15], k-nearest neighbor
method [16] and k-mean clustering [17]. Significant advance-
ments in diagnostics area have been achieved by applying
classification techniques based on machine learning or statistical
inferences, resulting in a number of classification methods, such
as back-propagation neural networks [18–21], deep belief net-
works [22,23], support vector machines [24–28], self-organizing
maps [29], and Mahalanobis distance (MD) [15]. Some research-
ers combined two or more existing techniques to form hybrid
models to achieve better diagnostic performance. Zhang et al.
[9] proposed a bearing fault diagnosis methodology using
multi-scale entropy (MSE) and adaptive neuro-fuzzy inference
system. Saimurugan et al. [24] presented a multi-component fault
diagnosis of a rotational mechanical system based on decision
trees and support vector machines.
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Despite a variety of numerical diagnostics algorithms being
developed and a broad range of successful applications in various
engineering fields being reported in the literature, one of the key
challenges in structural health diagnostics lies in the fact that
health relevant sensory data must be collected effectively so that
enough evidences can be provided for diagnostics algorithms to
conduct health state identification and damage detection.
However, implicit relationship between sensory signals and
system health states as well as sensor noise and uncertainties
related to system operating conditions render a grand challenge
in developing an effective sensor network so that system health
states can be accordingly diagnosed accurately with sensory data
collected from the sensor network. To overcome this challenge, a
sensor network must be developed with sensors nodes being
optimally placed so that the differences between different system
health states can be reflected clearly on sensory signals. In
addition, the sensor network must be designed to ensure the
robustness of health diagnostics given the aforementioned
uncertainties and variability involved in sensing and diagnosing
processes. In the literature, sensor placement optimization under
uncertainties has been studied for structural health monitoring
applications [30,31], and further optimal location of sensors has
been presented for parametric identification of linear structural
systems [32]. A methodology for optimally locating sensors in a
dynamic system [33,34] was developed as a probabilistic
approach in structural health monitoring system. The study in
[35] developed a Bayesian approach to optimize sensor placement
for structural health monitoring. In [36], an optimal sensor loca-
tion methodology for structural identification and damage detec-
tion has been studied. Most of these methods were settled for
allocating a number of sensors to distinguish a specific health
state of structural damage, and their applications were limited
by the type of health state failure mechanisms. Although reported
studies on sensor placement optimization have showed
improvements on health diagnostics performance, there are two
fundamental challenges that hinder the broad applications of this
technique. First, the sensing capability of the sensor nodes used in
sensor placement studies have been mostly assumed to be inde-
pendent to the target systems, which is generally not true for
practical structural applications; Second, there is no quantitative
measure for the diagnostics performance related based upon a
given sensor network design, thus, the performance robustness
cannot be ensured in the sensor network design process.

To address the aforementioned sensor network design chal-
lenges for structural diagnostics applications, this paper presents
a novel reliability-based robust design optimization (RBRDO)
framework for structural sensing function design using multifunc-
tional materials. The RBRDO technique has been developed to
ensure the performance robustness thus improve quality and
reliability in product and process design, while considering
uncertainties involved in different stages of a system’s life cycle
[37–42]. In detail, design optimization of piezoelectric embedded
sensor patches is considered to realize structural sensing function
[43–48]. First, a generic detectability measure is defined in this
study to quantify the performance of a given sensing system for

diagnostics under uncertainty. A novel detectability analysis
approach based on Mahalanobis distance classifier is then
developed to carry out the detectability analysis for a given sensing
system design. Second, with the defined detectability measure and
developed detectability analysis approach, a novel reliability-based
robust design optimization (RBRDO) framework is presented for
sensing system design in order to minimize the system
development costs while maintaining the predefined detectability
target. The rest of the paper is organized as follows. First, smart
sensing with piezoelectric materials is introduced in Section 2. In
Section 3, a detectability measure is defined in a probabilistic form
as a unified quantitative measure for the performance of any given
sensing system used for the structural health diagnostics. A general
approach for detectability evaluation is also introduced based on
health state classification. In Section 4, a generic RBRDO framework
is developed to design smart material systems for the structural
health diagnostics and prognostics. Two case studies are used in
Section 5 to demonstrate the effectiveness of the proposed
methodology in developing structural sensing systems.

2. Smart sensing with piezoelectric materials

Piezoelectric materials can be potentially applied in both
sensing and actuating applications [49–53]. In sensing applications
the PZT sensor is attached to a structure and exposed to a stress
field that creates electric charges (direct piezoelectric effect). In
actuating applications the PZT actuator is attached to a structure
and an external electric source is applied to the actuator that
induce strain field (reverse piezoelectric effect). In both cases the
constitutive relationship can be mathematically formulated as
follows:

ei ¼ SE
ijrj þ dmiEm ð1Þ

Dm ¼ dmiri þ er
ikEk ð2Þ

where the indexes i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different
directions within the material coordinate system [51], r is a vector
of the stress (N/m2) and e is a vector of the strain, d is a matrix of the
piezoelectric strain constants that defines strain per unit at constant
stress (m/V), E is a vector of the electric field (V/m), SE is a matrix of
the elastic compliance (m2/N), D is a vector of the electric

Nomenclature

R reliability
U standard Gaussian cumulative distribution function
bt target reliability index
CL user-defined confidence level
F(x) cumulative distribution function
F�1(x) inverse cumulative distribution function

fx(x) probability density function
f(�|�) conditional probability density function or likelihood

function
pfs probability of system failure
Gi function of the ith constraint
C cost function
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Fig. 1. Schematic of a piezoelectric ceramic sheet.
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