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a b s t r a c t

In this paper, we newly present an effective shape optimization method for natural vibration design of
stiffened thin-walled or shell structures. Both the stiffeners and their basic structures are optimized by
solving two kinds of optimization problems. The first is a specified eigenvalue maximization problem
subject to a volume constraint, and the second is its reciprocal volume minimization problem subject
to a specified eigenvalue constraint. The boundary shapes of a thin-walled structure are determined
under the condition where the stiffeners and the basic structure are movable in the in-plane direction
to their surface. Both problems are formulated as distributed-parameter shape optimization problems,
and the shape gradient functions are derived using the material derivative method and the adjoint var-
iable method. The optimal free-boundary shapes are determined by applying the derived shape gradient
function to the H1 gradient method for shells, which is a parameter-free shape optimization method pro-
posed by one of the authors. Several design examples are presented to validate the proposed method and
demonstrate its practical usages.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled or shell structures are widely used as basic struc-
tural components in various industrial products such as car bodies,
aircraft fuselages, pressure vessels as well as in bridges and build-
ings. They are commonly stiffened by stiffeners to improve the
bending rigidity of the basic structures. With recent enhancements
of high speed, high function and substantial weight reduction of
thin-walled structures, the vibration design in consideration of
the dynamic characteristics has become more important than ever.
The natural frequencies (i.e., vibration eigenvalues) usually repre-
sent the dynamic characteristics of structures, especially the lower
order natural frequencies are considered as an evaluation measure
of the dynamic stability. The dynamic response of structures can be
reduced by increasing their lower order natural frequencies [1,2].
Moreover, the reduction of the dynamic response of a structure
generally leads to the minimum weight for the structure design [3].

In terms of the optimum design of stiffened thin-walled struc-
tures under either static or dynamic loading conditions, investiga-
tions have been extensively carried out to achieve better static or
dynamic performance as well as a lighter weight. Most of the

investigations focused on determining the best layout configura-
tions for stiffeners on thin-walled structures. For example, Cheng
and Olhoff [4] reported a method of generating the optimal stiff-
ener layout pattern for maximizing the integral stiffness of a solid
elastic plate by using the plate thickness function as the design
variable. Luo and Gea [5,6] used a systematic topology optimiza-
tion based approach to design the optimal location and orientation
of stiffeners for static and interior sound reduction problems. Liu
et al. [7] studied the eigenvalue sensitivity with respect to the loca-
tion of stiffeners for a stiffened plate. Ding and Yamazaki [8] intro-
duced a growing and branch tree model to generate stiffener
layout patterns on plate structures for vibration design problems.
Bojczuk and Szteleblak [9] showed an application of a method
based on sensitivity analysis combined with an adjoint method
to the optimization of 2D structures with respect to the deploy-
ment of stiffeners. Many investigations have also dealt with size
design optimization of stiffener geometrical properties, such as
their number [10,11], thickness [12], cross-section dimensions
[13,14], and spacing [15]. On the other hand, few studies contrib-
ute to the shape optimization of the stiffeners and their basic struc-
ture, though the optimum shape design can greatly influence the
static and dynamic characteristics as well as weight [16,17]. As
one of the few studies, the authors recently developed a parame-
ter-free shape optimization method to deal with the shape
optimum design of stiffeners on thin-walled structures [18]. In this
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method, we employed the adjoint variable method and the shape
updating approach by traction force to solve difficulties of the
large-scale design variables problem and the jagged boundary
problem [19] in the parameter-free shape optimization. Bletzinger
[20] proposed the sensitivity filtering technique to solve these dif-
ficulties in their parameter-free method. To the best of our knowl-
edge, no other group has applied the parameter-free method to the
stiffener design problem. However, only the compliance minimiza-
tion problem was solved simply as a self-adjoint problem in our
previous work [18], in which the basic structure was assumed
not to be varied. It is not available for the vibration design in con-
sideration of the dynamic characteristics, which is known as a
more complicated design problem.

For the natural vibration problem of stiffened shells, this paper
newly presents a parameter-free shape optimization of both the
stiffeners and their basic structures on stiffened shells. Two kinds
of natural vibration design problems are treated as parameter-free
shape optimization problems. One is a specified eigenvalue maxi-
mization problem subject to a volume constraint, and the other
is its reciprocal volume minimization problem subject to a speci-
fied eigenvalue constraint. We formulate the two design problems
in the continuous system, or in the function space, which enables
our method to create the optimal shapes without any shape
parameterization and discretization in advance. In other words,
the shape obtained is not influenced by the parameterization and
the discretization. Sensitivity functions (i.e., shape gradient func-
tions) for both stiffeners and the basic structure are theoretically
derived using the material derivative method and the adjoint var-
iable method. The direct derivatives of the element stiffness matrix
are not required in the sensitivity calculation. Therefore, it can be
easily implemented in combination with a commercial FEM code
and the shape optimization of practical shell structures is easily
computable even if it is complicated. After that, the negative shape
gradient function derived is applied as a distributed force to free
boundaries of the stiffeners and the basic structure to vary the
shapes. This approach makes it possible both to reduce the objec-
tive functional and to maintain the mesh regularization simulta-
neously. Moreover, the target vibration mode is considered as the
one receiving the most attention or being disadvantageous in the
practical design. To eliminate difficulties caused by repeated eigen-
values, i.e., mode switching or frequency crossing during optimiza-
tion [21], the Modal Assurance Criterion (MAC) [22] is adopted to
track the specified natural mode through changes in the eigenvalue
maximization or eigenvalue constraint problem.

In the following section, the governing equation of the natural
vibration of a shell will be described. Next, the formulation of
design problems and the derivation of each shape gradient func-
tion will be presented in Section 3. After explaining the details of
the optimization method in Section 4, the validity and practical
utility of this method will be verified through several design exam-
ples in Section 5.

2. Variational equation for natural vibration of shell modeled
by infinitesimal flat plates

As shown in Fig. 1 and Eqs. (1)–(3) basic shell structure or stiff-
ener with an initial bounded domain X � R3 is defined by the mid-
area A and the domain of thickness direction ð�h=2;h=2Þ, and the
side surface S is defined by the boundary @A of the mid-area A.

X ¼ fðx1; x2; x3Þ 2 R3jðx1; x2Þ 2 A � R2; x3 2 ð�h=2;h=2Þg; ð1Þ
X ¼ A� ð�h=2; h=2Þ; ð2Þ
S ¼ @A� ð�h=2; h=2Þ: ð3Þ

In the structural analysis of a shell with arbitrary geometry, a
practical approach is to model the shell by a set of infinitesimal flat
plates, that is not only for simplicity but also frequently performs

quite well in curved shell applications [23]. As shown in Fig. 1, each
flat plate dA has a local coordinate system (i.e., plate coordinate
system) that is fixed with respect to its geometry and independent
of the unique coordinate system used at all points on the shell (i.e.,
global coordinate system). Both coordinate systems are con-
structed as a Cartesian coordinate system. The transformation
between degrees of freedom in the local coordinates, ul, and in
the global coordinate, ug , is calculated in Eq. (4).

ul
j ¼ Tgl

ij ug
i ; ð4Þ

where Tgl indicates the global–local transformation tensor. The dis-
placement expressed by the local coordinates ul ¼ ful

igi¼1;2;3 is con-
sidered by dividing it into the displacement in the in-plane
direction ua and the displacement in the out-of-plane direction ul

3.
In this paper, the subscripts of the Greek letters are expressed as
a;b; c; d ¼ 1;2, the tensor subscript notation uses Einstein’s summa-
tion convention and a partial differential notation for the spatial
coordinates ð�Þ;i ¼ @ð�Þ=@xi.

The Mindlin–Reissner plate theory is applied for each flat plate
dA and a plate bending stiffness and membrane stiffness are com-
bined in its local coordinate system [24]. In the local coordinate
system of dA shown in Fig. 2, the membrane action is expressed
by the in-plane displacement u0a of the mid-area, and the bending
action is expressed by the out-of-plane displacement w, and the
rotational angle ha. The Mindlin–Reissner plate theory posits the
following conditions with respect to the displacement of a general
point on dA in its local coordinate system.

ul
aðx1; x2; x3Þ � u0aðx1; x2Þ � x3haðx1; x2Þ; ð5Þ

ul
3ðx1; x2; x3Þ � wðx1; x2Þ; ð6Þ

When assembling the flat plates to model the curved shell, the
bending and membrane stiffness are coupled only on the interele-
ment boundaries due to differences between adjacent plate orienta-
tions. Since the shell dealt with in our manuscript is assumed to be
assembled by infinitesimal flats, the differences should be extre-
mely small and the coupling effects can be neglected. Moreover, it
should be remarked that the formulation of a shell modeled as an
assembly of flat plates requires the handling of different coordinate
systems, and the bending stiffness and the membrane stiffness as
well as the force vector should be transformed from local coordi-
nates to the global coordinate. However, for the sake of brevity, this

Fig. 1. Shell geometry assembled by infinitesimal flat plates.

Fig. 2. Formulation of a infinitesimal flat plate dA in its local coordinate system.
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