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a b s t r a c t

The purpose of this study is to develop a model that describes the dynamics of the
daily average temperature accurately in the context of weather derivatives pricing. More
precisely, we compare two state-of-the-art machine learning algorithms, namely wavelet
networks and genetic programming, with the classic linear approaches that are used
widely in the pricing of temperature derivatives in the financial weather market, as well
as with various machine learning benchmark models such as neural networks, radial
basis functions and support vector regression. The accuracy of the valuation process
depends on the accuracy of the temperature forecasts. Our proposed models are evaluated
and compared, both in-sample and out-of-sample, in various locations where weather
derivatives are traded. Furthermore, we expand our analysis by examining the stability
of the forecasting models relative to the forecasting horizon. Our findings suggest that the
proposed nonlinear methods outperform the alternative linear models significantly, with
wavelet networks ranking first, and that they can be used for accurate weather derivative
pricing in the weather market.

© 2016 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper uses wavelet networks (WNs) and genetic
programming (GP) to describe the dynamics of the daily
average temperature (DAT), in the context of weather
derivatives pricing. The proposed methods are evaluated
both in-sample and out-of-sample against various linear
and non-linear models that have been proposed in the
literature.

Recently, a new class of financial instruments, known
as ‘‘weather derivatives’’ has been introduced. Weather
derivatives are financial instruments that can be used by
organizations or individuals to reduce the risk associated
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with adverse or unexpected weather conditions, as part
of a risk management strategy (Alexandridis & Zapranis,
2013a). Just like traditional contingent claims, the payoffs
of which depend upon the price of some fundamental,
a weather derivative has an underlying measure such
as rainfall, temperature, humidity, or snowfall. However,
they differ from other derivatives in that the underlying
asset has no value and cannot be stored or traded,
but at the same time must be quantified in order to
be introduced in the weather derivative. To do this,
temperature, rainfall, precipitation, or snowfall indices are
introduced as underlying assets. However, the majority
of the weather derivatives have a temperature index as
the underlying asset. Hence, this study focuses only on
temperature derivatives.

Studies have shown that about $1 trillion of the US
economy is exposed directly toweather risk (Challis, 1999;
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Hanley, 1999). Today, weather derivatives are used for
hedging purposes by companies and industries whose
profits can be affected adversely by unseasonal weather,
and for speculative purposes by hedge funds and others
who are interested in capitalising on these volatile mar-
kets. Weather derivatives are used to hedge volume risk,
rather than price risk.

It is essential to have a model that (i) describes
the temperature dynamics accurately, (ii) describes the
evolution of the temperature accurately, and (iii) can be
used to derive closed form solutions for the pricing of
temperature derivatives. In complete markets, the cash
flows of any strategy can be replicated by a synthetic one.
In contrast, the weather market is an incomplete market,
in the sense that the underlying asset has no value and
cannot be stored, and hence, no replicating portfolio can
be constructed. Thus, modelling and pricing the weather
market are challenging issues. In this paper, we focus on
the problem of temperature modelling. It is of paramount
importance to address this problem before doing any
investigation into the actual pricing of the derivatives.

There has been quite a significant amount of work
done to date in the area of modelling the temperature
over a certain time period. Early studies tried to model
different temperature indices directly, such as heating
degree days (HDD) or the cumulative average temperature
(CAT).1 Following this path, a model is formulated so as
to describe the statistical properties of the corresponding
index (Davis, 2001; Dorfleitner & Wimmer, 2010; Geman
& Leonardi, 2005; Jewson, Brix, & Ziehmann, 2005). One
obvious drawback of this approach is that a different
model must be used for each index when formulating the
temperature index, such as HDD, as a normal or lognormal
process, meaning that a lot of information both in common
and extreme events is lost; e.g., HDD is bounded by zero
(Alexandridis & Zapranis, 2013a).

More recent studies have utilized dynamic models,
which simulate the future behavior of DAT directly.
The estimated dynamic models can be used to derive
the corresponding indices and price various temperature
derivatives (Alexandridis & Zapranis, 2013a). In principle,
using models for daily temperatures can lead to more
accurate pricing than modelling temperature indices. The
continuous processes used formodeling DAT usually take a
mean-reverting form, which has to be discretized in order
to estimate its various parameters.

Most models can be written as nested forms of
a mean-reverting Ornstein–Uhlenbeck (O–U) process.
Alaton, Djehince, and Stillberg (2002) propose the use of
an O–U model with seasonalities in the mean, using a
sinusoidal function and a linear trend in order to capture
urbanization and climate changes. Similarly, Benth and
Saltyte-Benth (2007) use truncated Fourier series in order
to capture the seasonality in the mean and volatility. In a
more recent paper, Benth, Saltyte-Benth, and Koekebakker
(2007) propose the use of a continuous autoregressive
model. Using 40 years of data in Stockholm, their results
indicate that their proposed framework is sufficient to

1 The CAT and HDD indices are explained in Section 2.

explain the autoregressive temperature dynamics. Overall,
the fit is very good; however, the normality hypothesis is
rejected even though the distribution of the residuals is
close to normal.

A common denominator in all of the works mentioned
above is that they use linearmodels, such as autoregressive
moving average models (ARMA) or their continuous
equivalents (Benth & Saltyte-Benth, 2007). However, a
fundamental problem of such models is the assumption of
linearity, which cannot capture some features that occur
commonly in real-world data, such as asymmetric cycles
and outliers (Agapitos, OŃeill, & Brabazon, 2012b). On the
other hand, nonlinear models can encapsulate the time
dependency of the dynamics of the temperature evolution,
and can provide a much better fit to the temperature data
than the classic linear alternatives.

One example of a nonlinearwork is that by Zapranis and
Alexandridis (2008), who used nonlinear non-parametric
neural networks (NNs) to capture the daily variations of
the speed at which the temperature reverts to its seasonal
mean. Their results indicated that they had managed to
isolate the Gaussian factor in the residuals, which is cru-
cial for accurate pricing. Zapranis and Alexandridis (2009)
used NNs to model the seasonal component of the resid-
ual variance of amean-revertingO–U temperature process,
with seasonality in the level and volatility. They validated
their proposedmethod onmore than 100 years of data col-
lected from Paris, and their results showed a significant
improvement over more traditional alternatives, regard-
ing the statistical properties of the temperature process.
This is important, since small misspecifications in the tem-
perature process can lead to large pricing errors. However,
although the distributional statistics were improved sig-
nificantly, the normality assumption of the residuals was
rejected.

NNs have the ability to approximate any deterministic
nonlinear process, with little knowledge and no assump-
tions regarding the nature of the process. However, the
classical sigmoid NNs have a series of drawbacks. Typ-
ically, the initial values of the NN’s weights are chosen
randomly, which is generally accompanied by extended
training times. In addition, when the transfer function is
of sigmoidal type, there is always a significant chance that
the training algorithm will converge to a local minimum.
Finally, there is no theoretical link between the specific
parametrization of a sigmoidal activation function and the
optimal network architecture, i.e., model complexity.

In this paper, we continue to look into nonlinear
models, but wemove away from neural networks. Instead,
we look into two other algorithms from the field of
machine learning (Mitchell, 1997): wavelet networks
(WNs) and genetic programming (GP). The two proposed
nonlinear methods will then be used to model the DAT.
There are various reasons why we focus on these two
nonlinear models. First, we want to avoid the black-boxes
produced by alternative nonlinearmodels, such asNNs and
support vector machines (SVM). Second, bothmodels have
many desirable properties, as it is explained below.

One of the main advantages of GP is its ability to
produce white-box (interpretable) models, which allows
traders to visualise the candidate solutions, and thus the
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