
A non-parametric solution to shape identification problem of free-form
shells for desired deformation mode

Yang Liu a,⇑, Masatoshi Shimoda b

a Department of Mechanical Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 567-0047, Japan
b Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku-ku, Nagoya 468-8511, Japan

a r t i c l e i n f o

Article history:
Received 3 December 2013
Accepted 29 July 2014
Available online 27 August 2014

Keywords:
Shape identification
Stiffness control
Curvature distribution
Free-form shells
Non-parametric
Traction method

a b s t r a c t

A shape identification method of free-form shells is presented for controlling the static deformation mode
to the desired one. This problem is formulated as a parameter-free shape optimization problem, in which
a squared displacements error norm on the prescribed region is employed as an objective functional. The
shape sensitivity, called shape gradient function, is theoretically derived using the adjoint variable
method and the formula of the material derivative, and then applied to a gradient method with Laplacian
smoother for shells to determine the smooth optimal shape. Several calculated examples are presented to
verify the validity and practical utility of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shell structures are widely used as basic components in various
kinds of structures in civil, architectural, mechanical, aeronautical,
and marine engineering. Since shapes or curvature distributions of
shells greatly influence its mechanical properties and weight, it is
strongly required to find their optimal shapes so as to satisfy var-
ious mechanical characteristics, functions and artistic impression if
required. Almost all the literatures regarding shells [1,2] are to
obtain a maximization of the mechanical characteristics, or a min-
imum weight. However, in the practical design of shell structures,
a geometrical shape constraint of controlling the deformation
mode to be a desired one is also necessary to be considered for
attaining the precision requirement or achieving an imposed func-
tion on the structure. One of the optimum design under the geo-
metrical shape constraint is homology design. The concept of
homology design was proposed by Hoerner in the design of large
radio telescopes [3], where the deformation of a structure was
defined as homologous if a given geometrical relation holds for a
given number of structural points before, during, and after the
deformation. Later, Yoshikawa et al. proposed a formulation based
on the finite element sensitivity analysis for homology design of
frame structures [4,5]. Shimoda et al. presented shape and

topology optimization methods of continua for homologous defor-
mation using the traction method [6,7]. Lee et al. developed a truss
optimization method using equality equations to include homol-
ogy constraints under multiple loading conditions as well as single
loading conditions [8,9]. Shin et al. employed the homologous
design to a nuclear fuel spacer grid spring, which supports the fuel
rods in a nuclear fuel system, to reduce the fretting wear while
maintaining the functions of the spring [10]. Another approach
for controlling the deformation mode is based on the optimum
design of compliant mechanism. In designing compliant mecha-
nism, the displacements of the loading area (i.e., input displace-
ments) and the specified region (i.e., output displacements) are
controlled to be a desired value in the specified direction, in order
to achieve a flexible structure with mechanical function. Although
the objective of the compliant mechanism design is similar to the
homology design, the design methods for compliant mechanisms
are mainly based on topology optimization. Design of compliant
mechanism using topology optimization was firstly introduced
by Ananthasuresh et al. in 1994 [11]. Subsequently, researches
on compliant mechanism with topology optimization were
extended to various optimization formulations [12–14]. However,
current researches on the homology design and the compliant
mechanism are limited to 2D and 3D continua, and the optimum
design of free-form shells for achieving a desired deformation
mode has not been discussed.

Focusing on shape optimization method of the shell structure, it
is categorized into parametric and non-parametric methods in
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terms of design variables. Most of previously proposed shape opti-
mization methods for shells are parametric methods [15–17]. The
parametric methods are effective to reduce the design variables,
but require a shape parameterization for complicated structure
in advance and the obtained shapes are strongly dominated by
the parameterization process. On the other hand, in the non-para-
metric methods, i.e., node-based methods, all of the nodal coordi-
nates can be taken as design variables. Due to the result is not
restricted to the parametrization, the non-parametric methods
give more freedom to the optimization process and an optimal
shape obtained is near a result of natural choice. Difficulties of
the non-parametric methods are that it has to deal with a large
number of design variables and to overcome the jagged boundary
problems, which were pointed out in one of the earliest works on
shape optimization by Braibant and Fleury [18]. The adjoint vari-
able method is commonly used in the sensitivity analysis to resolve
the former large-scale problem, and filtering techniques have been
developed as smoothing solutions to the latter jagged shape prob-
lem. Among those techniques, Bletzinger et al. proposed a mesh
independent regularization method based on sensitivity filtering
in the shape updating process [19–22]; Le et al. introduced an
shape filtering approach by filtering actual values of the design
variables [23]; Hojjat et al. reported a vertex morphing method
to perform the out-of-plane filtering and in-plane mesh regulariza-
tion operators simultaneously [24]. There are also filtering tech-
niques as developed for CFD problems [25,26]. Alternatively,
Shimoda et al. proposed a parameter-free optimization method
for shells based on the traction method [27,28], which is a type
of gradient method in the Hilbert space [29,30]. In this method,
the adjoint variable method was also employed and fictitious
forces were used to vary the surface shape, and to reduce the
objective functional while maintaining the mesh regularity [31].
In our previous work, this method was expanded to deal with a
parameter-free shape optimization of stiffeners on thin-walled
structures [32].

In this study, we develop this method to solve a shape identifi-
cation problem of linear elastic free-form shells for the purpose of
achieving a desired deformation mode under external forces. Con-
trolling the displacement distribution to a given desired one can
contribute to solving compliant design problems of thin-walled
structures, which means that the solution described here can
impart a function to structures by simply changing their shapes.
Moreover, a stiffness control problem can be achieved by defining
the displacements of the loading points to the desired values. In
this paper, firstly, the shape identification problem is formulated
as a parameter-free shape optimization problem, in which the
desired deformation mode is identified by introducing a squared
error displacements norm of a deformed shape on its prescribed
surface as the objective functional. Subsequently, sensitivity

function (i.e., shape gradient function) for this problem is theoret-
ically derived using the material derivative method and the adjoint
variable method. After that, the negative shape gradient function
derived is applied in the normal direction to the pseudo-elastic
shell as a fictitious distributed traction force to vary the shapes.
This approach makes it possible both to reduce the squared error
displacements norm and to maintain the mesh regularization,
simultaneously. With the proposing method, an optimum shell
structure with a smooth free-form surface and a desired deforma-
tion mode can be obtained without any shape parameterization.

2. The weak-formed governing equation for a shell modelled by
infinitesimal plates

As shown in Fig. 1, consider a shell consisting of an initial
bounded domain X � R3 with boundary of @X , mid-area A with
the boundary of @A, side surface S and plate thickness h. An in-
plane load f ¼ ff aga¼1;2, an out-of-plane moment m ¼ fmaga¼1;2

and an out-of-plane load q per unit area are applied on A, and an
in-plane load N ¼ fNaga¼1;2, a bending moment M ¼ fMaga¼1;2

and a shearing force Q per unit length are applied on @A. As a prac-
tical analysis approach to free-form shell with arbitrary geometry,
a general linear elastic shell is modelled by a set of infinitesimal
flat plates, that is not only for simplicity but also frequently per-
forms quite well in curved shell applications [33]. Each flat plate
element has a local coordinate system (i.e., element coordinate sys-
tem) that is fixed with respect to the element’s geometry and inde-
pendent of the unique coordinate system used at all nodes (i.e.,
global coordinate system). The transformation between nodal
degrees of freedom in the local coordinates, ue, and nodal degrees
of freedom in the global coordinate, ug , is calculated in Eq. (1).

ue
j ¼ Tge

ij ug
i ð1Þ

where Tge indicates the global–local transformation matrix.
The plate bending theory used in this paper is based on the

Reissner–Mindlin theory [34], in which membrane action and
bending action are combined in the local coordinate system as
shown in Fig. 2. Since the plate shells are assumed to be infinites-
imal, coupling effects of the membrane component and the bend-
ing component should be extremely small and can be neglected for
simplicity [33]. The details of assembling the bending stiffness and
the membrane stiffness as well as the force vector to the global
coordinate system are introduced in the reference [35].

The Reissner–Mindlin plate theory assumes the following con-
ditions with respect to displacement in the local coordinate system
of each plate shell.

ue
aðx1; x2; x3Þ � u0aðx1; x2Þ � x3haðx1; x2Þ; ð2Þ

ue
3ðx1; x2; x3Þ � wðx1; x2Þ; ð3Þ
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Fig. 1. Shell geometry assembled by infinitesimal flats.
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