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a b s t r a c t

The performance of the parallel implementation of the local meshless numerical method in solving sys-
tem of coupled partial differential equations is explored. Presented numerical approach makes the com-
putation convenient for parallel implementation using OpenMP based parallelisation. The numerical
experiments are performed on the de Vahl Davis natural convection case, with superlinear computational
speedup regime identified. The phenomenon is further investigated through measurements of the central
processing unit cache hit rates. It is demonstrated that the accumulation of L3 caches governs the
superlinear speedup. Considering the presented analyses, basic rules for effective computation strategy
regarding the multicore computations are suggested.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical analysis and computer modelling are becoming
basic tools for technological and scientific research. Numerous
problems, e.g. fluid flow, various transport phenomena, weather
dynamic, etc., require adequate discretization techniques to be
addressed. In the majority of numerical simulations, the Finite
Volume Method (FVM) [1], the Finite Difference Method (FDM)
[2], the Boundary Element Method (BEM) [3] or the Finite Element
Method (FEM) [4] are used. However, in the last few years, new
class of numerical methods, referred to as the meshless methods
[5], is becoming popular as an alternative. The treatment of com-
plex geometries is within the meshless framework much simpli-
fied since no topological relations between computational nodes
are needed. Several different meshless methods exist [6–8] and
this work is focused on one of the simplest among them – the
point interpolation [9] Local Radial Basis Function Collocation
Method (LRBFCM) [10]. The main advantage of the local numerical
method is that the system matrix remains sparse or banded, which
simplifies the solution procedure. In contrast, a global approach
[11] might become unstable for increasing number of discretiza-
tion points, demands a lot of computational resources, and com-
plicates the computer program implementation. Besides the
simpler formulation, the local solution procedure also enables
higher parallel efficiency. From the computation point of view,

the localisation reduces inter-processor communication, which is
often a bottleneck of parallel algorithms [12]. The computation
time is an important factor in numerical simulations and it is often
not addressed adequately. An important part of the numerical ap-
proach is thus the effective implementation of the solution proce-
dure on modern computer architectures. The developments in the
technology of the computer architectures are nowadays extremely
vivid. The processing power can be increased either by increasing
the processor’s clock frequency or by increasing the number of
processing units. The clock frequencies are approaching their
physical limits; therefore the second option – increased number
of processing units – is becoming more attractive. Parallel comput-
ers, available today in most desktop computers or computer serv-
ers, can compensate for the lack of performance of a single
computer, but only in cases where an efficient parallelization of
the computational method is known. Various application pro-
gramming interfaces (APIs) for parallel programming are used to
maximise the performance of parallel systems. Nowadays, the
most widely used APIs for parallel programming are MPI for dis-
tributed-memory systems, and Ptreads and OpenMP for shared-
memory systems [13]. Moreover, using graphical processing units
(GPUs) for solving parallel problems is widely spreading. APIs that
support parallel programming on GPUs are becoming more and
more popular, like CUDA and OpenCL [14,15]. There are several
publications regarding the parallelization of different numerical
schemes for various applied problems [12,16–18], mostly based
on MPI parallelization, but only a few numerical studies tackle
the influence of the cache memory effects on the performance of
parallel computations [19].
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In this paper, we demonstrate the efficiency of an OpenMP [20]
based parallel implementation of the completely local meshless
solution of the classical de Vahl Davis benchmark test case [21]
on a multicore multiprocessor architecture. The paper contributes
two basic messages. First, the parallelization of the proposed mesh-
less based numerical scheme is straightforward on shared-memory
systems. A minor amount of effort and expertise are required to ap-
ply OpenMP parallelization if the sequential code is ready, thus the
approach is interesting for engineering computations. On the other
hand, the method offers several convenient features, like ease of
implementation, stability, accuracy, and good convergent behav-
iour [22] that have been already successfully proved on several
demanding non-linear coupled problems [23–25].

Second, the efficiency of a parallel implementation can be
gravely affected by the memory architecture of a computational
system. It is demonstrated that extreme superlinear speedup can
be achieved if appropriate architecture is used for a specific prob-
lem size. The effect is explained by measurements of the central
processing unit (CPU) counters through execution of a simulation.
It is clearly shown that accumulating L3 caches govern the effect.
In other words, it is not only the power of CPU that matters in in-
tense simulations; communication speed is equally important.

The rest of the paper is organised as follows. In Section 2, the
test problem is described. Next, the meshless solution methodol-
ogy and LBRFCM are briefly presented, followed by description of
the parallel program implementation. Section 5 is devoted to the
analysis and interpretation of the obtained experimental results.
Concluding section summarises the results and provides sugges-
tions for the users dealing with complex realistic numerical
problems.

2. Governing equations

The most standard free fluid flow benchmark test is the well-
known de Vahl Davis natural convection test [21]. There are several
numerical solutions published in the literature [24,26,27] that
make the tests convenient for benchmarking purposes. The prob-
lem domain is a closed air-filled square-shaped cavity with differ-
entially heated vertical walls with temperature difference DT and
insulated horizontal walls. Non-permeable and no-slip velocity
boundaries are assumed. The problem dynamics is described by
three coupled partial differential equations (PDEs) equations: mass
(1), momentum (2) and energy conservation (3) equations, where
all material properties are considered to be constant. The Bous-
sinesq approximation (4) is used for the treatment of the body
force in the momentum equation. The natural convection is thus
described by the following system of equations

r � v ¼ 0; ð1Þ

q
@v
@t
þ qr � ðvvÞ ¼ �rP þr � ðlrvÞ þ b; ð2Þ

q
@ðcpTÞ
@t

þ qr � ðcpTvÞ ¼ r � ðkrTÞ; ð3Þ

b ¼ q½1� bTðT � TrefÞ�g; ð4Þ

with vðu;vÞ; P; T; k; cp; g; q; bT ; Tref ; l and b standing for veloc-
ity, pressure, temperature, thermal conductivity, specific heat, grav-
itational acceleration, density, coefficient of thermal expansion,
reference temperature for Boussinesq approximation, viscosity
and body force, respectively. The thermo-physical properties are as-
sumed constant in the de Vahl Davis case. The case is characterised
by two dimensionless values

Ra ¼ jgjbTDTX3
Hq2cp

kl
; ð5Þ

Pr ¼ lcp

k
; ð6Þ

referred as Rayleigh and Prandtl numbers, respectively. XH,W stands
for the domain dimension (Fig. 1).

3. Solution procedure

In this work, we focus on a local meshless numerical method
with a local pressure–velocity coupling. The general idea behind
the method is the use of local sub clusters of discretization nodes
termed as local support domains (Fig. 2). Within a selected support
domain, an arbitrary field is approximated as a linear combination
of weighted basis functions

hðpÞ ¼
XN

n¼1

anWnðpÞ; ð7Þ

where h, N, an and Wn, p(px,py) stand for the approximation func-
tion, the number of basis functions, the approximation coefficients,
the basis functions and the position vector, respectively. Such an
approximation function is created in each discretization point.
Considering the analysis from Franke [28], we use Hardy’s Multi-
quadrics (MQs) for the basis functions. We use the collocation
approach, i.e. the number of support points is the same as the num-
ber of the basis functions. After the solution of local systems, i.e.
determination of unknown coefficients a, the arbitrary spatial dif-
ferential operation L can be evaluated (7)

LhðpÞ ¼
XN

n¼1

anLWnðpÞ: ð8Þ

The computation of the coefficients and the evaluation of the differ-
ential operators can be combined in a single operation. The differen-
tial operator vL vector is introduced as

vL
mðpÞ ¼

XN

n¼1

W�1
nmLðWnðpÞÞ ð9Þ

and a differential operation is thus simplified to

LhðpÞ ¼
XN

n¼1

vL
mðpÞhðpnÞ: ð10Þ

The structured formulation is convenient for implementation since
most of the complex and CPU demanding operations are performed
in the pre-process phase. The Neumann boundary conditions are
computed directly by Eq. (10) while the Dirichlet conditions are
explicitly set. More details about the presented spatial discretiza-
tion can be found in [29].

Fig. 1. The geometry and boundary conditions of natural convection benchmark
test.
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