
An Efficient Sudden-Power-off-Recovery Design with Guaranteed
Booting Time for Solid State Drives

Yu-Ming Chang1,3, Ping-Hsien Lin1,4, Ye-Jyun Lin1,5, Tai-Chun Kuo1,6,
Yuan-Hao Chang2,10, Yung-Chun Li1,7, Hsiang-Pang Li1,8, KC Wang1,9

1Macronix International Co., Ltd., Emerging System Lab., Hsinchu 300, Taiwan, R.O.C.
2Institute of Information Science, Academia Sinica Taipei 115, Taiwan, R.O.C.

{3sanchang, 4pinghsienlin, 5yejyunlin, 6tjkuo, 7monixslee, 8sbli, 9kcwang}@mxic.com.tw, 10johnson@iis.sinica.edu.tw

Abstract
Solid state drives (SSDs) that deliver high-bandwidth and low-latency
performance have become the mainstream of storage devices in modern
systems. Over the past years, there has been a great deal of researches
conducted to improve the SSD performance or reliability with parallel or
efficient address translation designs. On the contrary, little work is done
for the optimization to guarantee the booting/recovery time of SSDs after
any sudden power-off. Motivated by the fact that the fast-growing SSD
capacity gradually makes existing scanning and recovering processes be-
come infeasible and unacceptable, we propose an efficient sudden-power-
off-recovery design to recover an SSD with guaranteed booting time.
The proposed design was implemented on an SSD prototyping platform
equipped with in-house NAND flash memories and was evaluated with
various benchmarks. The results demonstrate that after sudden power-
off, the prototyped SSD can be recovered with a guaranteed and bounded
booting time between 80ms and 200ms.

1. Introduction
Sold state drives (SSDs) that include multiple flash-memory chips have
become a popular alternative to replace hard disk drives (HDDs) in recent
years, because of their shock resistance, high energy efficiency, and high
I/O performance. In order to be compatible with the existing storage in-
terface, i.e., logical block address (LBA), each SSD needs to keep track
of the address translation information from LBAs to their corresponding
physical addresses in the flash memory. The address translation infor-
mation is usually maintained/cached in the internal RAM space of the
SSD. Once a sudden power-off (or power-loss) occurs, the address trans-
lation information would be crashed and need to be recovered by scanning
the whole flash-memory space. Such a scanning and recovering process
is extremely time-consuming, and is gradually becoming infeasible and
unacceptable due to the fast-growing storage capacity. Such an observa-
tion motivates us to explore the solution that could efficiently recover the
address translation information to make SSDs resilient to sudden power
losses and system crashes.

An SSD usually consists of multiple flash-memory chips. Each chip
is composed of a large number of blocks. Each block consists of a fixed
number of pages, where a block is the basic unit of erase operations and
a page is the unit of read/write operations. Each page is divided into
a data area and a spare area. The data area is used to store user data,
and the spare area is also called out-of-band (OOB) area that maintains
the house-keeping information such as the error correction codes (ECC)
and information of logical block addresses. Because of the write-once
property, each page can not be overwritten unless its residing block is
erased. A typical solution to overcome this constraint is to adopt the
out-place update that writes updated data in free pages to improve the
write performance. As a result, multiple versions of the same data could
coexist in the SSD at the same time. The up-to-date version is called
valid data and the old versions are considered as invalid data. The pages
with valid data (resp. invalid data) are referred to as valid pages (resp.
invalid pages). Due to the out-place update, in each SSD, a management
software, i.e., flash translation layer (FTL), is needed to maintain the
address translation information that maps each LBA to its corresponding
valid page/data. Note that we refer “address translation information” and
“mapping information” interchangeably when there is no ambiguity. In
addition, the FTL also includes a garbage collector that is activated to
reclaim space of invalid data when there is not enough free space in the
SSD. Due to the limited number of program/erase (P/E) cycles of each

block, the FTL also includes a wear leveler that is used to prolong the
lifetime of the SSD by evenly erasing flash blocks to avoid wearing out
any block prematurely.

Due to the importance of address translation information in SSDs,
many excellent FTL designs were proposed to resolve the management
issue and to achieve a good compromise between read/write performance
and RAM space requirement [7,10,13,16]. Based on the on-demand load-
ing/storing address translation information, some proposed to include a
update mapping table that only logs the modified mapping information
to reduce the overheads on loading/storing address translation informa-
tion [14]. Another research direction is the garbage collection (GC) that
also has significant impact on the performance of SSDs. The simplest so-
lution is the greedy policy that selects the block with the largest number of
invalid pages to minimize the overheads on moving valid pages out of the
to-be-erased blocks [17], and some others proposed hot-cold swapping
and data clustering to improve the GC performance with considering the
age of valid data [6,9,11,12]. Meanwhile, to resolve the endurance issue,
some researchers focused on different wear leveling designs to extend
the lifetime of flash storage devices by moving data around flash blocks
to prevent wearing out any block excessively [1, 2, 5, 15]. Furthermore,
due to the advances of manufacturing technology, the reliability of flash
memory has drawn a lot of attention in recent years. To tackle this issue,
some researchers proposed to improve the reliability of flash memory by
reducing the write disturbance [4] or including some parity information
to improve the capability on correcting error data [3, 19]. However, there
is little work that focuses on how to efficiently and reliably recover the
address translation information of SSDs after sudden power loses, even
though the fast-growing capacity of SSDs gradually makes greedy scan-
ning methods infeasible.

In this work, an efficient sudden-power-off recovery (SPOR) design is
proposed to enhance the reliability of SSDs with the guaranteed booting
time without additional hardware support. The proposed design aims at
recovering address translation information correctly and efficiently after
any (normal or sudden) power-off. In particular, the design is configurable
such that the booting (recovery) time can be bounded and guaranteed by
adjusting the synchronization frequency of address translation informa-
tion from RAM to flash memory during the runtime. We must point out
that the proposed design only has to read relatively a small number of
pages during the system recovery, in contrast to the past recovery de-
sign by scanning the whole flash-memory space. The evaluation results
demonstrate that the average booting time is 132ms under all investigated
benchmarks. Especially, the booting time is bounded between the theo-
retical worst-case and the best-case values derived from our analysis.

The rest of the paper is organized as follows. Section 2 presents the
proposed sudden-power-off-recovery (SPOR) design. Section 3 reports
the experiment results. Section 4 is the conclusion.

2. A Sudden Power-off Recovery Design
2.1 Overview

In this section, a sudden power-off recovery (SPOR) design is proposed
to enhance the reliability of an SSD by enabling the SSD to survive un-
der any sudden power-off without any power-off notification to the con-
troller of the SSD. To be more specific, the SPOR design can efficiently
recover the address translation information after sudden power losses.
Meanwhile, it is realized with a software implementation so that no ad-
ditional hardware resource, e.g., super capacitor, is required. To preserve
the flexibility, this design is configurable and able to control the expected

978-1-4673-8833-7/16/$31.00 ©2016 IEEE

booting (or recovery) time by adjusting the synchronization frequency for
the data stored on RAM and on flash memory. With regard to the compati-
bility of various SSD designs, the proposed idea is presented based on the
most well-know design of flash translation layer, i.e., DFTL [10], which
proposed to load address translation information to RAM (e.g., DRAM
and SRAM) on demand.

NAND
Flash

DRAM or SRAM

Le
as

t-R
ec

en
tly

-U
se

d
M

an
ag

em
en

t Load

Write
Back

L2 Mapping PageL2 Mapping Pagepp g g
L3 Mapping PageL3 Mapping Pagepp g g
L3 Mapping Pagegapping pp g

……
L2 Mapping PageL2 Mapping Pagepp g g
L3 Mapping Page

Root Page

Summary PageSummary Pagey g
Summary Pagey gmmary Pay

…… Active/Passive
SynchronizationData Buffer

Other (FTL Firmware)

Figure 1. The architecture of the SPOR design for SSDs.

Figure 1 shows the architecture of the proposed SPOR design, which
is able to resist sudden power-off to ensure data integrity. Since the access
speed of RAM is much faster than flash memory, the frequently-accessed
data such as frequently-used metadata should be stored on RAM. In the
proposed design, the SRAM contains a root page, L2/L3 mapping pages,
summary pages, data buffer, and the FTL firmware at runtime. The root
page and the L2/L3 mapping pages are the address translation information
(see Section 2.2) that (1) maps the logical address of a read/write request
to the corresponding physical address and (2) are loaded on demand from
flash memories. The summary page is used to store the auxiliary data,
such as bad/free block tables and valid/invalid counters, for the SSD
management. The data buffer stores the data of write requests issued from
the host and the data read from flash memories. The FTL firmware stores
the code for running the FTL design and the proposed SPOR design.

The data on RAM (e.g., DRAM and SRAM) are called on-RAM data,
and the data on (NAND) flash memory are called on-NAND data. To re-
duce the hardware cost of RAM, the memory allocated for storing address
translation information is limited 1. Thus, the proposed design shall try to
hold only the frequently-accessed mapping pages on RAM by manag-
ing them in the least-recently-used (LRU) fashion. Since RAM is volatile
and can not preserve any data after the power-off (or power recycling),
some on-RAM data must be written back to flash memory timely for data
consistency and mapping information recovery. More specifically, the on-
RAM data that have been updated and are not consistent with the copies
in flash memory are referred to as dirty data (marked with gray color
in Figure 1) and should be eventually written back to flash memory. On
the other hand, the clean data (marked with white color in Figure 1) are
consistent with the copies in flash memory so that they can be discarded
directly in any circumstances.

Synchronizing the on-RAM and on-NAND data timely and efficiently
is the key issue to the read/write and booting efficiency of SSD. To this
end, the proposed SPOR design includes two synchronization mecha-
nisms, i.e., active synchronization and passive synchronization, to syn-
chronize critical on-RAM data actively and passively (see Section 2.3);
thus, the data integrity is guaranteed and the full mapping information is
recoverable. In addition, we also present the booting/recovery procedure
to reconstruct all the on-RAM data including the mapping and summary
information to correctly access data of the up-to-date version (see Sec-
tion 2.4). In particular, the booting time is configurable and bounded with
the proposed SPOR design such that the booting cost can be minimized
with a given SSD specification.

2.2 Paging-like Address Translation Mechanism

In this section, a paging-like address translation mechanism in the pro-
posed SPOR design is presented to illustrate the flow on serving the

1 Although the platform used to implement an SSD prototype has a large memory
size, i.e., 2GB, we only use partial memory in the emulation for the cost consider-
ation.

read/write requests from the host, where any metadata, i.e., mapping in-
formation, used in the mechanism should be recoverable after any sudden
power-off. It will translate a logical page address (LPA) of a read/write
request to a physical address of flash memory in a way that is very simi-
lar to the paging mechanism used in the memory management of modern
OSes. In this way, only a part of mapping pages are required and loaded
(or read) to RAM, so that the space efficiency of RAM is improved as the
RAM size is limited. To simplify the illustration for the address transla-
tion, we only focus on the discussion in looking up the mapping pages to
find the physical address of a given logical page address, instead of the
management of mapping pages on RAM.

5 bit 9 bit 9 bit

LPA: 526341

NAND
Flash

(channel, chip, plane, block, page)

Read L2 mapping page from NAND

Read L3 mapping page from NAND

Decode Decode Decode

(Decimal) LPA: 526341
(Binary) LPA: 00010 000000100 000000101

On DRAM

Figure 2. An example of the paging-like address translation.

To clearly illustrate the proposed paging-like address translation
mechanism, an example is presented in Figure 2 to explain the flow on
looking up a physical address. In the beginning, the logical page address
(LPA) of a read/write request will be divided into three segments and
presented in binary. The size of these three segments are 5-bit, 9-bit, and
9-bit respectively. In this example, if the LPA of a read/write request
is 526,341 and its binary representation is 00010000000100000000101.
This LPA will be divided into three segments with the binary values
00010, 000000100, and 000000101 accordingly. Then, the 3rd entry (i.e.,
entry 00010) in the root page should store the physical address that stores
the pointer pointing to the next-level mapping page, i.e., the L2 mapping
page, where the root page permanently resides on RAM so the access
cost on this page is negligible. Next, as the L2 mapping page is loaded
to RAM (or it has been loaded to RAM in the previous address trans-
lation), the 5th entry (or entry 000000100) in this mapping should store
the physical address that contains the pointer pointing to an L3 mapping
page. Finally, as the L3 mapping page is loaded onto RAM, its 6th entry
(or entry 000000101) should point to the target page storing data of LPA
526,341.

In the above example, we assume that the page size is 2KB, the size
of an entry used to store one physical address is 4B; thus, the maximum
number of entries in each page is 512. In this way, the number of required
bits to represent the location of each entry in a page is 9. This is why
the size of the two segments for indexing L2 and L3 mapping pages
are both 9. Since the used number of entries in the root page is 32, the
maximum size of the SSD capacity indexed by this example is 16GB
(32×512×512×2KB). Note that, any selection of the above parameters
(e.g., the number of used entries in a mapping page or a root page)
should depend on the specification of the considered SSD, and should
be compatible with the proposed SPOR design that synchronizes these
mapping pages timely and efficiently.

2.3 Active/Passive Synchronization Policy for On-RAM Data

In order to ensure the consistency of the metadata (including the address
translation information) between RAM and flash memory, the active and
passive synchronization policies are proposed to write the on-RAM data
back to the flash memory in different ways so as to avoid crashing any
metadata after a sudden power-off occurred. The passive synchronization
is activated passively and inevitably when some on-RAM data must be
written back to flash memory due to insufficient RAM space, and the
active synchronization is used to actively synchronize the on-RAM data
back to flash memory on a regular basis. In addition, the frequency of

Download English Version:

https://daneshyari.com/en/article/5117384

Download Persian Version:

https://daneshyari.com/article/5117384

Daneshyari.com

https://daneshyari.com/en/article/5117384
https://daneshyari.com/article/5117384
https://daneshyari.com

