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a b s t r a c t

We introduce the concept of spatial subsemble, a subset ensemble
estimation method useful in the analysis of large spatial random
field datasets. The full dataset is sampled to give small spatially
structured subsets of observations whose parameters are easily
estimated; these are combined using a weighting scheme based on
their cross-validation prediction ability. We show that our estima-
tor is consistent. More importantly, we compare the spatial sub-
semble with competing alternatives and show that our proposed
procedure is both accurate and much faster than its competitor.
We illustrate the use of our method using several examples from
large datasets.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The computer revolution is still going on after decades. Presently, one of its marked aspects is the
generation of massive amounts of data. We need to face datasets characterized by the presence of
the 4 V’s of big data: large volume, velocity, variety, and veracity. Mechanisms generating these data
are found wherever remote sensors, satellites, and mobile devices are used, including the emerging
internet of things. In particular, the size of spatial datasets has increased dramatically in the recent
past with the growth of global satellite imaging, climate monitoring, and the remote recording of
meteorological and air quality measurements. NOAA (the National Oceanic & Atmospheric Adminis-
tration, part of the US Department of Commerce) has a website where terabytes of data are generated
to represent the Earth’s climate, atmospheric and meteorological states.
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The main consequence of this growth for statisticians working in spatial statistics is the need to
deal with numerical and computational difficulties brought about by the massive amount of data to
be analyzed, since many methods typically crash or take too long to be useful. Consider, for example,
the exact computation of the likelihood assuming a Gaussian geostatistical model, with n stations
located in an irregularway on amap, generally requiresO(n3) numerical operations andO(n2)memory
space (Stein, 2008). These numbers scale up quickly. When n = 1000, most spatial statistics software
packages solve the problem easily, but when n = 50 000, the problem becomes a severe challenge for
most machines and softwares.

Several statisticians are actively looking for improved methods to analyze large spatial datasets,
both for cases where the covariance function is stationary, and where it is non-stationary. In the
case of stationary processes, there are two main lines of approach. The first adopts a Bayesian
viewpoint with work concentrated into two main categories: using a latent process with reduced
dimension (Banerjee et al., 2008; Finley et al., 2009), and using aMarkov random field to approximate
the Gaussian field (Lindgren et al., 2011; Rue and Tjelmeland, 2002). The second approach has
more variations. One is to taper the covariance function by setting the covariance between distant
stations equal to zero (Kaufman et al., 2008; Furrer et al., 2006). Another possibility is to truncate
the spectral representation to zero (Fuentes, 2007). Stein et al. (2004) and Vecchia (1988) used a
composite likelihood function while Sun and Stein (2016) work with the score function, with its
inverse covariance matrix approximated by a sparse matrix, and Castrillón-Candás et al. (2016) use
multilevel set of contrasts. All these methods ignore some aspect of the full model in order to reduce
the numerical complexity. Most of them differ by selecting different aspects to achieve a simplified
likelihood function.

The non-stationary large spatial datasets case has a smaller volumeof published research. Recently,
results have been published by Datta et al. (2016), Katzfuss (2016), Konomi et al. (2014), Katzfuss
(2013) and Sang et al. (2011).

Analysis of non-spatial big data problems are to be addressed by statisticians using subsampling
techniques (Kleiner et al., 2014; Sapp et al., 2014) and divide and conquer techniques (Guha et al.,
2012; Chen and Xie, 2014), which can significantly reduce the dimension of the problem, hence they
can alleviate the computational demand; a review of these techniques can be found in Schifano et al.
(2016) and Bühlmann et al. (2016). In the context of spatial statistics, Liang et al. (2013) developed
a method for large geostatistical datasets using a resampling-based, in which small subsamples are
sequentially selected andmodel parameter estimates are updatedwithin the framework of stochastic
approximation of Robbins and Monro (1951) and Andrieu et al. (2005).

Liang et al. (2013) provide a fast and consistent estimator which, hence it is appropriate for large
datasets. However, their method has drawbacks: it has a sequential structure which prevents it from
being parallelized, and it is necessary to check the stochastic convergence of the algorithm.

In this paper, we propose a newmethod that is simple to apply, computationally fast and requires
little memory space. It allows for the calculation of confidence intervals and it has good theoretical
properties for both the infill asymptotic approach as well as for the increasing domain asymptotic
approach. The method is based on subsampling small spatially structured subsets of observations.
In each subsample, we fit the parameters with the preferred method and combine them using a
validation subset. The two main advantages of our method are: first, its simplicity, making it very
easy to use; and second, its speed, since it can be parallelized. To show these advantages, we compare
our spatial subsemble algorithm with resampling-based stochastic approximation (RSA) by Liang et
al. (2013), andMLE (Maximum Likelihood Estimation), showing that the proposedmethod is accurate
and substantially faster than the other methods. We illustrate our method using a large NOAA dataset
of precipitation over the United States.

2. The spatial subsemble estimator

2.1. The geostatistical Gaussian model

Suppose the vector Y ≡ (Y (s1), Y (s2), . . . , Y (sn))T are observed values of a random process
{Y (s) : s ∈ D ⊂ R2

}, where the spatial index s varies continuously across the region D. Let the
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