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a b s t r a c t

Multivariate geostatistical data have become omnipresent in the
geosciences and pose substantial analysis challenges. One of them
is the grouping of data locations into spatially contiguous clus-
ters so that data locations within the same cluster are more
similar while clusters are different from each other. Spatially con-
tiguous clusters can significantly improve the interpretation that
turns the resulting clusters into meaningful geographical subre-
gions. In this paper, we develop an agglomerative hierarchical clus-
tering approach that takes into account the spatial dependency
between observations. It relies on a dissimilarity matrix built from
a non-parametric kernel estimator of the multivariate spatial de-
pendence structure of data. It integrates existing methods to find
the optimal number of clusters and to evaluate the contribution of
variables to the clustering. The capability of the proposed approach
to provide spatially compact, connected andmeaningful clusters is
assessed using multivariate synthetic and real datasets. The pro-
posed clustering method gives satisfactory results compared to
other similar geostatistical clustering methods.

© 2016 Published by Elsevier B.V.

1. Introduction

Multivariate data indexed by geographical coordinates have become increasingly frequent in the
geosciences and pose real analysis challenges. A basic problem is the clustering of observations into
spatially contiguous groups so that observations in the same group are similar to each other and

E-mail address: francky.fouedjiokameni@csiro.au.

http://dx.doi.org/10.1016/j.spasta.2016.07.003
2211-6753/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.spasta.2016.07.003
http://www.elsevier.com/locate/spasta
http://www.elsevier.com/locate/spasta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spasta.2016.07.003&domain=pdf
mailto:francky.fouedjiokameni@csiro.au
http://dx.doi.org/10.1016/j.spasta.2016.07.003


334 F. Fouedjio / Spatial Statistics 18 (2016) 333–351

different from those in other groups. Some typical applications in the geosciences are (Schuenemeyer
and Drew, 2011): (i) defining climate zones, (ii) determining zones of similar land use, (iii) identifying
archaeological sites, (iv) delineating agricultural management areas, and (v) defining ore typologies.

In the non-spatial context, the problem of clustering observations is well-known and described
in many textbooks from a descriptive to theoretical viewpoint. There are two principal clustering
approaches namely, hierarchical and partitioning (Kaufman and Rousseeuw, 1990; Charu and
Chandan, 2013). In the hierarchical approach, a tree-like structure is constructed using agglomerative
or divisive procedures. In the partitioning approach, observations are divided into clusters once
the number of clusters to be formed is specified. Very often, applied to geostatistical data, these
non-spatial clustering algorithms have a tendency to produce spatially scattered clusters. However,
this characteristic is undesirable for many geoscience applications (e.g., delineation of agricultural
management zones).

In the geostatistical context, a more specific approach is needed. In fact, geostatistical data often
show properties of spatial dependency and heterogeneity over the study region. Observations located
close to one another in the geographical space might have similar characteristics. Furthermore, the
mean, the variance, and the spatial dependence structure can be different from one subregion to
another. Hence there is a need to obtain close related or contiguous clusters of data locations with
similar attribute values. The clustering can be achieved in different ways, depending mainly on the
measure used to quantify proximity among observations. It is important to point out that proximity
in the attribute space does not ensure proximity in the geographical space. Thus, in addition to the
proximity in the attribute space, proximity in the geographical space must be taken into account.
Moreover, data locations belonging to the same cluster should usually be close to one another in the
geographical space. To address these constraints, conventional non-spatial clustering approaches have
been adapted. Existing approaches can be distinguished into four different categories: (i) non-spatial
clustering with geographical coordinates as additional variables, (ii) non-spatial clustering based on
a spatial dissimilarity measure, (iii) spatially constrained clustering, and (iv) model-based clustering.

The first category incorporates the spatial information by just considering geographical
coordinates as additional variables. In otherwords, each observation is seen as a point in a dimensional
space, including both the geographical space and the attribute space. Thereby non-spatial clustering
methods like K -means clustering or agglomerative hierarchical clustering can be applied to this new
space. In practice, the resulting clusters provided by this approach look too scattered spatially. Indeed,
this approach does not distinguish between the geographical space and the attribute space.

The second category uses existing non-spatial clustering methods by modifying the dissimilarity
measure between two observations to take explicitly into account the spatial dependence. Olivier
and Webster (1989) were the first to propose an approach of this kind. In the univariate case, they
suggested using the stationary variogram of data to weight the original dissimilarities between data
locations; whereas in the multivariate case, the stationary variogram of the first principal component
of data is employed. In the multivariate case, Bourgault et al. (1992) used the stationary multivariate
variogram of data as the weighting function to decrease similarities of distant data locations. In
the approaches proposed by Olivier and Webster (1989) and Bourgault et al. (1992), clustering
proceeds in two main steps. The first step involves computing dissimilarities between all pairs of
sampling locations from attribute values. These dissimilarities are modified by multiplying them
by a function of geographical separation to form new dissimilarities. The second step finds latent
roots and vectors of the resulting dissimilarity matrix and uses the leading vectors to apply the
K -means clustering. Romary et al. (2015) pointed out that these methods have a tendency to produce
a smooth dissimilarity matrix without however reinforcing the spatial contiguity between resulting
clusters.

The third category is different from the second one in that it considers spatial contiguity con-
straints rather than spatial dissimilarities. Specifically, data locations are grouped together through a
non-spatial clustering technique according to a set of spatial contiguity constraints. In the univari-
ate case, Pawitan and Huang (2003) developed two spatially constrained clustering algorithms, hi-
erarchical and non-hierarchical. The spatial connectivity of resulting clusters is imposed by a graph
structuring data locations in the geographical space such as the Delaunay triangulation. However, the
lengths of the edges of the graph are not accounted; this might produce spurious results. In themulti-
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