Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Reducing emissions by optimising the fuel injector match with the combustion chamber geometry for a marine medium-speed diesel engine

Nao Hu^{a,b,*}, Peilin Zhou^a, Jianguo Yang^{b,c}

^a Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, G4 0LZ Glasgow, UK ^b School of Energy and Power Engineering, Wulan University of Technology, 430063 Wulan, PR China

^c Key Laboratory of Marine Power Engineering & Technology, Ministry of Communications, 430063 Wuhan, PR China

ARTICLE INFO

Article history: Available online 6 April 2017

Keywords: Injector Combustion chamber Diesel engine Emission Fuel consumption

ABSTRACT

The effects of seven matching parameters of a fuel injector and combustion chamber geometries on nitrogen oxide (NO_x), soot and specific fuel oil consumption (SFOC) were investigated by means of a parametric study. The study was carried out on four different engine loads, i.e. L25 (25%), L50 (50%), L75 (75%) and L100 (100%) loads. The injection-related parameters were found to have more prominent influences as opposed to the combustion chamber geometries. Then, a multi-objective genetic algorithm (MOGA) method was proposed in order to identify a set of optimal designs for the L100 load. The emissions and performance of these optimal designs were also examined and compared on the other three engine loads. Finally, an optimal design which meets the IMO (International Maritime Organization) Tier II NO_x emissions regulations (research shows it is impossible to meet Tier III NO_x emissions regulations solely on the basis of the optimisation of the combustion progress) and which has the best fuel economy was singled out.

© 2017 Published by Elsevier Ltd.

1. Introduction

Marine diesel engines play an indispensable role in shipping. Their extensive application as main propellers or generators mainly relies on their high reliability and fuel economy. However, intolerable pollutions caused by them are gaining increasing focuses worldwide. Compared to automotive diesel engines, marine diesel engines exhaust much lower CO, CO_2 and HC emissions, and conversely generate severely deteriorated NO_x emissions. As a result, the IMO expressly referred to the NO_x emissions in the revised Annex VI of MARPOL (Pueschel et al., 2013), as shown in Table 1. Tier II NO_x emission regulation came into force for engines mounted on a ship constructed on or after 1 January 2011. It stipulated the reduction of NO_x up to 20% by comparing to Tier I regulations in the global area. The more stringent Tier III regulations were applied for engines installed on a ship constructed on or after 1 January 2016, operating in the ECAs. It requires a NO_x reduction of 80% from Tier I. Tier II regulations are still applied for ships operating outside of the ECAs.

In view of the challenge posed by stringent emission regulations, some existing technologies are applicable, for example, the EG), the SCR, the 2-stage TC system together with an extreme Miller cycle, the dual fuel engine or the nature gas operation (Christer, 2013; Steffe et al., 2013). However, some existing marine diesel engines installed on old ships can only meet

^{*} Corresponding author at: School of Energy and Power Engineering, Wuhan University of Technology, 430063 Wuhan, PR China *E-mail address*: nao.hu.0128@gmail.com (N. Hu).

	ature
2D	two dimensional
BTDC	before top dead centre
CFD	computational fluid dynamics
CO	carbon monoxide
CO ₂	carbon dioxide
	connection length
D2	a test cycle for NO _x emissions
DoE	design of experiment
	emission control areas
	exhaust gas recirculation
	genetic algorithm
	bowl radius
	hydrocarbons
	high-pressure common rail
	international maritime organization
	a Fortran-based CFD software
	full engine load
	25% engine load
	50% engine load
	75% engine load
	the international convention for the prevention of pollution from ships
	multi-objective genetic algorithm
	non-linear programming by quadratic Lagrangian
	nitrogen oxides
	nozzle protrusion length pressure implicit split operator
	toroidal radius
	spray angle
	specific fuel oil consumption
	semi-implicit method for pressure linked equations
	quasi-random low-discrepancy sequences
	start of injection
	selective catalytic reduction
	swirl ratio
ГС	turbocharging
	top dead centre
	the distance from the centre of toroidal surface to the piston top surface
	clearance
	crown centre height
	-
Functions	and variables
	n-dimensional parameter vector
	function
,	variable
	objective
	maximum objective numbers
	Pareto design
x _j	arbitrary design
Units	
	crank angle
	degree
	grams per kilowatt-hour
	litre
	kilo Watt
kW	
	millimetre
mm	millimetre rotates per minutes

Download English Version:

https://daneshyari.com/en/article/5119413

Download Persian Version:

https://daneshyari.com/article/5119413

Daneshyari.com