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a b s t r a c t

The fast method of approximate particular solutions (FMAPS) is based on the global version of the
method of approximate particular solutions (MAPS). In this method, given partial differential equations
are discretized by the usual MAPS and the determination of the unknown coefficients is accelerated
using a fast technique. Numerical results confirm the efficiency of the proposed technique for the PDEs
with a large number of computational points in both two and three dimensions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

During the past two decades, the radial basis functions (RBFs)
have been widely applied for solving partial differential equations
(PDEs). Kansa [13] first proposed the so-called RBF collocation
method in 1990 for computationally solving fluid dynamic pro-
blems. One of the attractions of the Kansa method is its simplicity
for solving problems in high dimensional and irregular domains.
Due to the popularity of the Kansa method, several other RBF
collocation methods have been proposed. Among them, the
method of approximate particular solutions (MAPS) [5,6] is
another effective method using the particular solution of the given
RBFs as the basis function. The formulation of the MAPS produces
a full and dense matrix system which is often very ill-conditioned.
Traditionally, this matrix system is solved by using direct or
iterative methods. Direct methods such as Gaussian elimination
require OðN3Þ operations for an N � N system of equations. For
iterative methods, we may obtain the approximate solution in k
steps with each step needing a matrix vector multiplication OðN2Þ.

In recent years, the MAPS has been widely applied to solve
physical and engineering problems like Navier–Stokes equations
[3], Stokes flow problems [4], Linear elasticity equations [2], Time-

fractional diffusion equations [10], Inverse problem of non-
homogeneous convection-diffusion equation [12], Diffusion equa-
tion with non-classical boundary [1] and Nonhomogeneous cau-
chy problems of elliptic PDEs [15]. Simulations of these kinds of
problems involve a large number of interpolation points. The high
computational cost using traditional solvers has become an issue.
In this paper we pay special attention on how to develop a fast
algorithm to alleviate the issue of high cost for solving large-scale
problems using the MAPS. Consequently, we propose to couple the
MAPS with a fast summation method to reduce the computational
time by multiplying a matrix and a vector in each step inside the
iterative method. This fast summation method is based on the
Chebyshev interpolation [9]. As we shall see in the section of
numerical results, we have successfully solved a 2D problem using
694,541 collocation points with only 77.15 s of computer running
time and 343,000 collocation points with 105.15 s for a 3D pro-
blem. Moreover, we do not compromise the accuracy for our
proposed fast computation.

The structure of the paper is as follows. In Section 2, we give a
brief review of the MAPS and the closed-form particular solution
of the Gaussian for Laplacian in 2D and 3D. In Section 3, we review
the algorithm of fast summation method (FSM). In Section 4, we
propose the fast method of approximate particular solutions
(FMAPS) by coupling the FSM and the MAPS as a fast algorithm for
solving PDEs which require a large number of collocation points. A

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2015.12.015
0955-7997/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: cschen.math@gmail.com (C.S. Chen).

Engineering Analysis with Boundary Elements 64 (2016) 290–294

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2015.12.015
http://dx.doi.org/10.1016/j.enganabound.2015.12.015
http://dx.doi.org/10.1016/j.enganabound.2015.12.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.12.015&domain=pdf
http://dx.doi.org/10.1016/j.enganabound.2015.12.015


specific algorithm has been given. In Section 4.1, to demonstrate
the efficiency of the proposed method, two numerical examples
in 2D and 3D are given. Finally, a short conclusion is drawn in
Section 4.1.1.

2. Method of approximate particular solutions (MAPS)

For simplicity, let us consider the following Poisson equation
with Dirichlet boundary condition

ΔuðxÞ ¼ f ðxÞ; xAΩ; ð1Þ

uðxÞ ¼ gðxÞ; xA∂Ω; ð2Þ

where Δ is the Laplacian operator, Ω and ∂Ω are the interior and
boundary of the computational domain, respectively. Suppose f
xigni ¼ 1 are the interpolation points containing ni interior points in
Ω and nb boundary points on ∂Ω; i.e., n¼ niþnb. Let ϕ be a given
radial basis function. By the MAPS [6], we assume the solution to
(1) and (2) can be approximated by

uðxÞ � ûðxÞ ¼
Xn
j ¼ 1

αjΦðJx�xj J Þ; ð3Þ

where J � J is the Euclidean norm, fαjg are the undetermined
coefficients, and

ΔΦ¼ϕ: ð4Þ

By the collocation method, from (1) and (2), we have

Xn
j ¼ 1

αjϕ Jxi�xj J
� �¼ f ðxiÞ; 1r irni; ð5Þ

Xn
j ¼ 1

αjΦ Jxi�xj J
� �¼ gðxiÞ; niþ1r irn: ð6Þ

From (5) and (6), we can formulate a linear system of equations

Aα¼ F ð7Þ

where

A¼ ϕ
Φ

" #

ϕ¼ ϕ Jxi�xj J
� �� �

ij; Φ¼ Φ Jxk�xj J
� �� �

kj; 1r irni; 1r jrn;
niþ1rkrn;
α¼ ½α1 α2 ⋯ αn�T ; F¼ ½f ðx1Þ⋯ f ðxni Þ gðxni þ1Þ⋯ gðxnÞ�T .

For a more general form of the PDEs such as the following
convection-diffusion-reaction equation in 2D,

kΔuþ f ðxÞ∂u
∂x

þgðxÞ∂u
∂y

þhðxÞu¼ lðxÞ; x¼ ðx; yÞAΩ; ð8Þ

we have [5]

XN
j ¼ 1

αjðkϕ Jx�x Jð Þþ f ðxÞΦx Jx�xj J
� �þgðxÞΦy Jx�xj J

� �

þhðxÞΦ Jx�xj J
� �Þ ¼ lðxÞ: ð9Þ

One of the key procedures in the implementation of the MAPS
is to obtain the closed-form expression for the particular solutions
of the corresponding RBFs. The derivation of the particular solu-
tions for the well-known RBFs has already been known [7,16,18–
20]. Recently, the closed-form particular solutions of the Gaussian
have been derived in [14], which are stated as follows:

Theorem 1. Let ϕðrÞ ¼ expð�cr2Þ, c40, and ΔΦðrÞ ¼ϕðrÞ in 2D.
Then,

ΦðrÞ ¼
1
4c

Eiðcr2Þþ 1
2c

log ðrÞ; ra0;

�1
4c

ðγþ log ðcÞÞ; r¼ 0;

8>><
>>: ð10Þ

where

EiðxÞ ¼
Z 1

x

e�u

u
du; ð11Þ

and γC0:5772156649015328 is the Euler–Mascheroni constant
[11]. Note that EiðxÞ is the special function known as the exponential
integral function [11].

Theorem 2. Let ϕðrÞ ¼ expð�cr2Þ, and ΔΦðrÞ ¼ϕðrÞ in 3D. Then,

ΦðrÞ ¼
� ffiffiffiffi

π
p

4c3=2r
erfð ffiffiffi

c
p

rÞ; ra0;

�1
2c

; r¼ 0;

8>><
>>: ð12Þ

where erfðxÞ is the special function defined as follows [11]:

erfðxÞ ¼ 2ffiffiffiffi
π

p
Z x

0
e�u2

du: ð13Þ

In this paper, we adopt the Gaussian, ϕ, as the RBF basis
function and the corresponding particular solutions, Φ, as the
basis functions for the approximation of the partial differential
equation. The particular solutions of the Gaussian in (10) and (12)
contain the special functions, EiðxÞ and erfðxÞ, which is costly in
terms of numerical evaluation. The efficiency can be significantly
improved using compiled MATLAB MEX functions.

In the next section, we briefly introduce a fast summation
method for the matrix vector multiplication.

3. Fast summation method (FSM)

Consider the evaluation of the sum of the form

sðxÞ ¼
Xn
j ¼ 1

bjκ j jx�xj j j
� �

; ð14Þ

where κ is either the RBFs or the particular solution of the cor-
responding RBFs. We can evaluate the sum (14) in an efficient way
by using the Chebyshev interpolation technique as described in
[9].

From [9], let

PMðξ;ηÞ ¼
1
M

þ 2
M

XM�1

i ¼ 1

TiðξÞTiðηÞ; ð15Þ

where ξ; ηA ½�1;1�; Ti is the first kind Chebyshev polynomial of
order i.

Let H be a hypercube in D dimension which contains all the

given collocation points fxigni ¼ 1. Consider fξlg
MD

l ¼ 1, fηlgM
D

l ¼ 1 be two
identical sets of Chebyshev nodes in ½�1;1�D. Then by using linear
transformations, we can map xi; xj into ξi; ηj, and ξl; ηm
in ½�1;1�D into xl; xm in H, respectively.

Instead of directly evaluating (14), we approximate it by using
the following functional approximation

κ j jx�yj jð Þ ¼
X
l

X
m

k j jxl�ym j j
� �

QMðξl; ξÞQMðηm;ηÞ; ð16Þ

where ξ; η are the linear transformations of x; y, respectively, and
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