
A boundary element formulation for the heat equation with dissipative
and heat generation terms

Roberto Pettres a,b,c,n, Luiz Alkimin de Lacerda a,1, José Antonio Marques Carrer b

a Institute of Technology for Development LACTEC, Department of Civil Structures DPEC Curitiba, CEP: 81531-090. P. O. Box: 19067, Paraná, Brasil
b UFPR – Federal University of Paraná, Postgraduate Program in Numerical Methods in Engineering. Curitiba, Paraná, Brasil
c UFPR – Federal University of Paraná – Advanced Campus of Jandaia do Sul, Jandaia do Sul, Paraná, Brasil

a r t i c l e i n f o

Article history:
Received 27 March 2014
Received in revised form
7 November 2014
Accepted 9 November 2014
Available online 5 December 2014

Keywords:
Boundary element method
Transient heat equation
Time independent fundamental solution

a b s t r a c t

This article presents a formulation of the Boundary Element Method (BEM) for the study of heat
diffusion in isotropic and homogeneous media. The proposed formulation has a time independent
fundamental solution obtained from the two-dimensional Laplace equation. Consequently, the formula-
tion is called D-BEM since it has domain integrals in the basic integral equation. The first order time
derivative that appears in the integral equations is approximated by a backward finite difference scheme.
Internal dissipative and heat generation terms are considered in the analyses. The results from
the numerical model are compared with the available analytical solutions. The correlation estimator
R2 is employed to validate the numerical model and to demonstrate the accuracy of the proposed
formulation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This work is concerned with the development of a Boundary
Element Method (BEM) formulation for the solution of the heat
equation with the presence of dissipative and heat generation
terms. Before presenting the proposed formulation, a brief discus-
sion concerning the different formulations that can be used for the
solution of time-dependent problems by the BEM must be carried
out. Different BEM formulations arise according to the nature of
the fundamental solution employed, that is, according to the use
of time-dependent or time independent fundamental solutions.
In the first case, the so-called TD-BEM formulations arise (TD
means time-domain); see, for instance, Wrobel [1], Young et al. [2].
Here, only the boundary discretization is required for the solution
of problems with null initial condition, whereas problems that
present non-homogeneous initial condition are solved with the
discretization of the part of the domain where it appears. On the
other hand, the steady-state fundamental solution, much simpler
than the time-dependent one, can be used for performing time-
domain analyses. The counterpart of the simplicity of the funda-
mental solution is the presence of a domain integral, whose kernel
is constituted by the product of the fundamental solution by the

first order time derivative of the temperature, in the basic BEM
integral equation. The transformation of this domain integral into
boundary integrals, by means of suitable interpolation functions,
generates the DR-BEM formulation, DR meaning dual reciprocity;
see Tanaka et al. [3], Singh and Tanaka [4], Ochiai et al. [5,6]. If the
domain integral is kept into the integral equation, one has the
so-called D-BEM formulation, with D meaning domain. In the
D-BEM formulation, the discretization of the entire domain is
mandatory. The disadvantage of the domain discretization is
counterbalanced by the simplicity of the formulation and reliable
results it produces; see Taigbenu and Liggett [7] and Carrer et al.
[8]. Both the DR-BEM and the D-BEM formulations require the
adoption of a time-marching scheme, that is, an approximation for
the first-order time derivative: the simpler choice usually falls on
the backward finite difference scheme [9].

Although this scheme can always produce accurate results,
other alternatives were sought recently: in Carrer et al. [8], the
backward finite difference is combined with the Houbolt approx-
imation [10] and also an approach based on the subdomain
collocation method, Finlayson [11], is presented. The level of
accuracy, however, was the same achieved by the backward
difference scheme. It is important to mention that attention has
also been devoted to meshless approaches; see for instance
Boztosun and Charafi [12].

The context in which the present work is situated is based on
a D-BEM formulation and employs the backward finite difference as an
approximation for the first order time derivative of the temperature.
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The main contribution of the work is the incorporation of the heat
generation and of the dissipative terms. The domain discretization
employed triangular linear cells, in which it was assumed a constant
variation for the time derivative of the temperature. The boundary
discretization employed linear elements. It is important to note that
extra domain integrals appear in the formulation due to the presence
of the dissipative and heat generation terms. As these extra domain
integrals contain the fundamental solution in their integrand, their
evaluation does not present any additional effort, as the domain
integral related to the time derivative of the temperature has been
already computed. Three examples are included and the numerical
results are compared with the analytical solutions.

2. Mathematical model

The heat equation in a two dimensional isotropic and homo-
geneous domain Ω with boundary Γ is written as follows

∇2uðX; tÞ ¼ 1
α
∂uðX; tÞ

∂t
XAΩ; X ¼ ðx; yÞ ð1Þ

where α represents the coefficient of thermal diffusivity measured
in m2/s, u is the temperature, X is the field point and t is the time
variable.

The boundary conditions are:
Essential

uðX; tÞ ¼ ûðX; tÞ XAΓu ð2Þ
Natural

qðX; tÞ ¼ ∂uðX; tÞ
∂nðXÞ ¼ q̂ðX; tÞ XAΓq ð3Þ

The initial condition at t¼t0 is given by

uðX; tÞ ¼ u0ðX; t0Þ XAΩ ð4Þ

3. D-BEM formulation

The integral equation of the D-BEM formulation for the heat
equation can be written as follows

CðξÞuðξ; tÞ ¼
Z
Γ
unðξ;XÞqðX; tÞdΓ�

Z
Γ
qnðξ;XÞuðX; tÞdΓ

þ�1
α

Z
Ω

∂uðX; tÞ
∂t

unðξ;XÞdΩ ð5Þ

where CðξÞ is a geometric coefficient at the collocation point ξ, q is
the thermal flux and un and qn are the fundamental solution and
its normal derivative, respectively.

The expression of the fundamental solution unðξ;XÞ is given by
Greenberg [13],

unðξ;XÞ ¼ 1
2π

ln
1
r

� �
ð6Þ

where r¼ X�ξ
�� �� is the distance between field, X, and collocation,

ξ, points.
The derivative of the fundamental solution with respect to the

normal direction to the boundary is given by

qnðξ;XÞ ¼ ∂un
∂r

dr
dn

¼ � 1
2πr

dr
dn

ð7Þ

where n is the outward normal to the boundary.
For simplicity, the time derivative presented in Eq. (5) is

approximated by the backward finite difference formula [9]:

∂uðX; tÞ
∂t

¼ uðX; tþΔtÞ�uðX; tÞ
Δt

ð8Þ

Replacing (8) in (5) and grouping terms conveniently, one has

CðξÞuðξ; tþΔtÞ ¼
Z
Γ
unðξ;XÞqðX; tþΔtÞdΓ�

Z
Γ
qnðξ;XÞuðX; tþΔtÞdΓ

þ� 1
αΔt

Z
Ω
uðX; tþΔtÞunðξ;XÞdΩ�

Z
Ω
uðX; tÞunðξ;XÞdΩ

� �
ð9Þ

Eq. (9) can be used recursively for the solution of the problem,
starting at time tm and determining the variables at time tmþ1.
According to Wrobel [1], the critical time step, Δtc , can be
estimated as

Δtcr
L2j
2α

ð10Þ

where Lj is the boundary element size.
For the solution of the problem, the boundary Γ is divided

into boundary elements Γj, approximating the geometry of
each element Γj with linear interpolation functions. Along each
element the variables of the problem (potential and flux) are
approximated by linear continuous approximation functions, see
Brebbia [14].

In the domain discretization, it was assumed a con-
stant behavior of the potential within each cell. A generic cell is
defined by vertices k1(x1, y1), k2(x2, y2) and k3(x3, y3), as seen in
Fig. 1.

The cell integrals are calculated numerically using a local
coordinate transformation as illustrated in Fig. 2, and the global
coordinates are defined by,

x¼ 1–Uð Þx1þU 1–Vð Þx2þVx3½ �
y¼ 1–Uð Þy1þU 1–Vð Þy2þVy3

� � ð11Þ

The Jacobian of the transformation (Eq. (12)) is equal to the
double of the cell area A:

J
�� ��¼ ∂x

∂U
∂x
∂V

∂y
∂U

∂y
∂V

�����
�����¼ 2A ð12Þ

The non-singular cell integrals are computed with Gaussian
quadrature according to

R
Ωunðξ;XÞdΩ¼ ∑

i ¼ M

i ¼ 1
∑
j ¼ M

j ¼ 1

Z 1

0

Z 1�U

0
unðξi;XjÞjJjjdVdU

f or ia j

ð13Þ

where M is the number of cells.
In the cases where the source point is located in the cell

domain, a weak singularity is present and the integration is carried
out using the third order coordinate transformation proposed by
Telles [15]. For source points in the centroid of the cell, a cell
subdivision is performed as illustrated in Fig. 3 and each triangular
part is integrated with the same approach.

After applying Eq. (9) to the boundary nodes and internal
points, one obtains the following system of equations:

Hbb 1
αΔtM

bd

Hdb Iþ 1
αΔtM

dd

2
4

3
5 ub

ud

" #
mþ1

¼ Gbb

Gdb

" #
qb
h i

mþ1
þ 1
αΔt

Mbd

Mdd

" #
ud
h i

m

ð14Þ
In Eq. (14), H and G are matrices which result from the

boundary integrals related to qnðξ;XÞuðxÞ and to unðξ;XÞqðxÞ,
respectively; the matrix M results from the domain integrals and
I is the identity matrix. The first element of each superscript
indicates the position of the source point and the second, the
position of the field point, with b indicating boundary and d
indicating domain. The subscript mþ1 indicates the time
tmþ1 ¼ ðmþ1Þ and the subscript m, the time tm ¼mΔt, where Δt
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