
Transportation Research Part B 100 (2017) 284–301 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

Representation requirements for perfect first-in-first-out 

verification in continuous flow dynamic models 

Hillel Bar-Gera 

a , ∗, Malachy Carey 

b 

a Ben-Gurion University of the Negev, Department of Industrial Engineering and Management, P.O.Box 653 Beer-Sheva, 84105 Israel 
b Ulster University Business School, Ulster University, Northern Ireland BT37 0QB, UK 

a r t i c l e i n f o 

Article history: 

Received 5 August 2016 

Revised 2 February 2017 

Accepted 3 February 2017 

Available online 17 March 2017 

Keywords: 

Dynamic network loading 

First-in-first-out 

Continuous flow 

a b s t r a c t 

Dynamic models of traffic require answers for many issues. One of them is the way prior- 

ities of different traffic streams (commodities) are managed. This is particularly challeng- 

ing when flows are treated as continuous. It is common to consider the First-In-First-Out 

(FIFO) rule as a baseline for setting priorities; but most practical continuous flow dynamic 

models do not satisfy FIFO perfectly. This paper examines the difficulties associated with 

full adherence to network-wide FIFO. 

We examine six different ways to represent dynamic flow solutions over a network, 

and for each representation we discuss whether it is sufficient for verifying FIFO, whether 

the verification process is finite, and whether proving FIFO can be directly implied. 

Throughout the evaluation eight alternative definitions of FIFO are considered, seven of 

them are shown to be essentially equivalent, while the last definition is not, and may 

therefore be considered as “weak” FIFO. The most promising representation appears to be 

the one denoted as “cohort bundles,” while somewhat more abstract than the other repre- 

sentations, supporting this representation directly shows perfect FIFO satisfaction. Further 

evaluation of this representation remains a subject for future research. 

In a nutshell, the key conclusion of this analysis is that in order to satisfy perfect 

network-wide FIFO the number of discretized elements of flow should probably be al- 

lowed to grow quickly and unboundedly with model duration, and it cannot be deter- 

mined a-priori. These insights about the challenges of incorporating FIFO in continuous 

flow dynamic models, which may be relevant also for other behavior-based priority rules, 

can help modelers and practitioners set realistic expectations regarding the level of control 

over priority rules that can be achieved within finite-dimensional continuous flow dynamic 

models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Continuous flow dynamic network loading (DNL) models have been studied extensively in recent decades, and proved 

useful in many practical applications. Popular examples are the cell transmission model – CTM ( Daganzo, 1994 ) and the 

link transmission model – LTM ( Yperman et al., 2006 ). In these models the propagation of traffic through nodes (from 

cell to cell or from link to link) is depicted by continuous variables representing the amount of traffic crossing the node 

∗ Corresponding author. 

E-mail addresses: bargera@bgu.ac.il (H. Bar-Gera), m.carey@ulster.ac.uk (M. Carey). 

http://dx.doi.org/10.1016/j.trb.2017.02.002 

0191-2615/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.trb.2017.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/trb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2017.02.002&domain=pdf
mailto:bargera@bgu.ac.il
mailto:m.carey@ulster.ac.uk
http://dx.doi.org/10.1016/j.trb.2017.02.002


H. Bar-Gera, M. Carey / Transportation Research Part B 100 (2017) 284–301 285 

within discrete time steps. DNL variants differ in several main aspects: grid discretization vs. grid-free methods; link model; 

node model or intersection representation (merges, diverges, as well as signalized and unsignalized intersections); aggrega- 

tion/disaggregation of flow into commodities, e.g. by origin/destination/route; and priority rules governing the management 

(or book-keeping) of commodities by priorities at the link and node levels. This study focuses on the last aspect, namely 

how priorities of commodities are managed. 

In many previous studies, as early as Carey (1986) and Smith (1993) , flow propagation priority rules aimed to satisfy 

the first-in-first-out (FIFO) condition. When time and space are considered as continuous, conditions of perfect network- 

wide FIFO can be formulated (e.g. Friesz et al., 1993; Friesz et al., 2013 ). Practical numerical solutions must have a finite- 

dimensional representation, i.e. some form of discretization. 1 One of the most elaborate schemes for handling network-wide 

FIFO in finite-dimensional solutions is by consideration of history lists ( Smith, 1993 ). The scope of this paper is exploring the 

range of solution representations between the two options: fully continuous and history lists. Formal expositions of these 

two solution representations are given in Sections 3 and 8 respectively, and for the other representations in Sections 4 –7 . 

History lists may seem to be as far as one would wish to go in an effort to satisfy FIFO. However, as we shall see, history 

lists are not sufficient for perfect FIFO verification. To the best of our knowledge, with a few exceptions (e.g. Smith, 1993 ), 

most finite-dimensional continuous-flow DNL models with route departure rate inputs address FIFO only within links, at 

various levels of precision or approximation. Therefore, these models are further away from perfect network-wide FIFO 

than solutions with history list representations. Clearly many of these models are very useful and have important value 

in dealing with the complexity of dynamic traffic networks, despite their deviation from FIFO. Future research stemming 

from the present paper may enable producing perfect FIFO solutions, at least for specific cases. Such solutions could be 

used to evaluate the magnitude of the deviations from FIFO in alternative approximate models, and to explore the practical 

implications of these deviations on model usefulness. 

A few previous studies examined part of the difficulties associated with implementing FIFO. One study illustrated 

how commonly used methods in CTM may lead to FIFO deviations ( Blumberg and Bar Gera, 2009 ). A subsequent study 

( Carey et al., 2014 ) explored several levels of FIFO approximation, demonstrated why perfect FIFO cannot be ensured by any 

of them, thus further illustrating the difficulty of dealing with the FIFO condition. 

It is well known that in real traffic adherence to FIFO is not perfect. Some may argue that if our models deviate from FIFO 

and reality deviates from FIFO then there is no problem. However, there is no a-priori reason to assume that the deviations 

from FIFO in models (stemming from computational reasons) should bear resemblance to the deviations from FIFO in real 

traffic (stemming from driver behavior). In addition, there is no reason to assume that alternative priority rules will be 

easier than FIFO to implement computationally, especially if such rules will be derived from quantitative empirical evidence 

to reflect actual traffic behavior. 

It seems reasonable to expect that modelers should have control over the priority rule in their model. In particular, 

modelers may expect the freedom to choose whether FIFO will be satisfied strictly, or whether to deviate from FIFO. In the 

latter case modelers may wish to specify the nature and the magnitude of the deviations from FIFO they wish to introduce. 

This is why we believe that better understanding of the FIFO challenges is important, a goal we hope to partially address in 

this paper. 

To achieve this goal, two approaches can be considered: (1) a constructive practical approach focusing on what needs to 

be done during the computation of, e.g., a CTM solution; and (2) a formalistic approach focusing on definitions of math- 

ematical conditions that can be used to verify perfect FIFO, and particularly what are the requirements from the way the 

solution is described in order to ensure perfect FIFO. A constructive approach will be developed in a separate article. The 

focus of this article is the second approach. 

By FIFO verification, in this paper, we are concerned with what numerical tests or checks would need to be undertaken 

(explicitly or implicitly) to determine whether a given DNL solution does, or does not, fully satisfy FIFO. In some cases 

this could mean checking the solution at every point in time and space. In other cases, it may be sufficient to check the 

solution at a finite number of points, e.g. if we can assume linearity of time-space trajectories between these discrete points. 

Note that the DNL solutions are taken as given, already constructed, hence we are not concerned here with methods used 

to construct DNL solutions. Also, this paper is not concerned with taking individual DNL models or methods and proving 

whether they do, or do not, always fully satisfy FIFO. 

The perspective taken in this paper is not a standard one. It can be viewed as a thought experiment involving an interface 

between two participants: one participant is the solution proponent, and the other is the FIFO verifier. The FIFO verifier 

asks the solution proponent to compute various values, and based on these values she tries to identify FIFO violations, or 

to determine that the solution satisfies network-wide FIFO perfectly. For example, the FIFO verifier may ask: “What is the 

cumulative volume at time t = 37 s in the position x = 591 m along link 22 ˮ. The proponent will need to provide a value, 

say 932.534. The verifier is allowed to submit many queries, and to choose new queries based on the responses to previous 

queries. The proponent cannot take back any previous answers, and must respond to each query independently of any prior 

1 The term discretization is used here as in Finite Element Analysis (e.g. Johnson, 1987 ) to imply any strategy for identifying a mesh, i.e. a finite set 

of points in the time-space domain, which is used as a basis for choosing a finite-dimensional subset from the infinite-dimensional solution space of 

continuous functions. The mesh points need not be regular, and they need not be predetermined. Discretization may lead to approximation, but in some 

cases it can support exact solutions as well. 
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