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a b s t r a c t 

This paper proposes a new spatial generalized ordered response model with skew-normal 

kernel error terms and an associated estimation method. It contributes to the spatial anal- 

ysis field by allowing a flexible and parametric skew-normal distribution for the kernel 

error term in traditional specifications of the spatial model. The resulting model is esti- 

mated using Bhat’s (2011) maximum approximate composite marginal likelihood (MACML) 

inference approach. The model is applied to an analysis of bicycling frequency, using data 

from the 2014 Puget Sound household travel survey undertaken in the Puget Sound re- 

gion in the State of Washington in the United States. Our results underscore the important 

effects of demographic variables, as well as the miles of bicycle lanes in an individual’s 

immediate residential neighborhood, on bicycling propensity. An interesting finding is that 

women and young individuals (18–34 years of age) in particular “warm up” to bicycling as 

more investment is made in bicycling infrastructure, thus leading not only to a larger pool 

of bicyclists due to bicycling infrastructure enhancements, but also a more diverse and 

inclusive one. The results highlight the importance of introducing social dependence ef- 

fects and non-normal kernel error terms from a policy standpoint. Specifically, our results 

suggest that ignoring these effects, as has been done by all earlier bicycling studies, can 

underestimate the impacts of bicycling infrastructure improvements and public campaigns 

on bicycle use frequency, potentially leading to under-investments in bicycling infrastruc- 

ture projects. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ordered-response (OR) choice models are now widely used in many different disciplines, including sociology, biology, 

political science, marketing, and transportation. OR models may be used when analyzing ordinal discrete outcome data that 

may be considered as manifestations of an underlying scale that is endowed with a natural ordering. Examples include 
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ratings data (for instance, of consumer products and movies), or likert-scale type attitudinal/opinion data (for example, 

of traffic congestion levels and teacher evaluations), or intensity data (such as of land use development levels and pain 

levels). In all of these situations, the observed outcome data may be considered as censored (or coarse) measurements of 

an underlying latent continuous random variable. The censoring mechanism is usually characterized as a partitioning or 

thresholding of the latent continuous variable into mutually exclusive (non-overlapping) intervals. The reader is referred 

to McKelvey and Zavoina (1971) and Winship and Mare (1984) for some early expositions of the ordered-response model 

formulation, and Liu and Agresti (2005) and Greene and Hensher (2010) for a survey of more recent developments. 

The standard ordered-response model of McKelvey and Zavoina (1971) has been generalized in many different directions. 

One important direction is the extension to allow the thresholds (that map the latent underlying continuous variable to 

the observed ordinal outcomes) to vary across individuals due to observed individual characteristics, while also ensuring 

(through functional form specifications) that the resulting thresholds satisfy, for each individual in the sample, the ordering 

needed to ensure positive probabilities of each ordinal outcome (see Eluru et al., 2008 and Greene and Hensher, 2010 ). 

As indicated by Greene and Hensher (2010) in Chapter 7 of their book, the resulting generalized ordered-response (GOR) 

model has been recently applied to many different application contexts. Castro et al. (2013) have also shown how a specific 

functional form parameterization of the thresholds leads to a generalized count model. 

In this paper, we use the GOR structure as the starting point, and extend the formulation in two different directions. The 

first direction relates to the distribution of the kernel error distribution, and the second relates to spatial dependence. Each 

of these is discussed in turn in the next two sections. 

1.1. The kernel error term structure 

The estimation of ordered-response models is based on potentially noisy observations of ordinal outcomes, and thus 

there is little a priori information to specify the probability distribution form for the data generation process conditional on 

the observed explanatory variables. But it is typical in the literature to impose an a priori and convenient, but potentially 

very restrictive, kernel error distributional assumption for the underlying data generation process. Two of the most dominant 

error distribution assumptions are the logistic and normal distributions, leading to the familiar logit-based GOR and probit- 

based GOR models, respectively. But the actual functional form of the latent variable (conditioned on observed covariate) 

that underlies the observed discrete choice is seldom known in practice. It also, however, is widely recognized that mis- 

specification of the kernel error distribution will, in general, lead to inconsistent estimates of the choice probabilities as 

well as the effects of exogenous variables ( Geweke and Keane, 1999 ; Caffo et al., 2007 ). This has led to the use of non- 

parametric as well as semi-parametric (or flexibly parametric) methods to characterize the error distribution (many studies 

using such methods are focused on binary choice models, though the same methods are applicable to ordered-response 

models). The non-parametric methods (see Berry and Haile, 2010 and Greene and Hensher, 2010 , Chapter 12 for reviews) 

allow consistent estimates of the observed variable effects under broad model contexts by making regularity (for instance, 

differentiability) assum ptions on an otherwise distribution-free density form. But the flexibility of these methods comes at 

a high inferential cost since consistency is achieved only in very large samples, parameter estimates have high variance, 

and the computational complexity/effort can be substantial ( Mittlehammer and Judge, 2011 ). On the other hand, the semi- 

parametric methods, while not guaranteeing consistency in as broad a sense as the non-parametric methods, are somewhat 

easier to implement. They also allow asymmetric and flexible kernel error distribution forms. While the class of semi- 

parametric (or flexibly parametric) methods subsumes many different approaches, the ones that are used quite widely fall 

under the finite discrete mixture of normals (FDMN) approach (see Geweke and Keane, 1999; Caffo et al., 2007; Fruhwirth- 

Schnatter, 2011a,b; Ferdous et al., 2011 ; and Malsiner-Walli et al., 2016 ) or the best fit parametric distribution selection 

approach through generalized link functions (see, for example, Stewart, 20 05; Czado and Raftery, 20 06 and Canary et al., 

2016 ). 

1.2. Spatial dependence 

There is increasing interest and attention in discrete choice modeling on recognizing and explicitly accommodating spa- 

tial dependence among decision-makers, based on spatial lag and spatial error-type specifications (and their variants) that 

have been developed for continuous dependent variables. Further, the importance of spatial modeling, while originating 

initially in urban and regional modeling, is now permeating into economics and mainstream social sciences, including agri- 

cultural and natural resource economics, public economics, geography, sociology, political science, epidemiology, and trans- 

portation. Some examples in these fields include assessing the harvest level of agricultural products ( Ward et al., 2014 ), 

determining the siting location for an industry ( Alamá-Sabater et al., 2011; Bocci and Rocco, 2016 ), analyzing voter turnout 

in an election ( Facchini and François, 2010 ), and investigating crashes and accident injury severity ( Rhee et al., 2016; Castro 

et al., 2013 ). The reader is referred to a special issue of the Journal of Regional Science edited by Partridge et al. (2012) for col- 

lections of recent papers on spatial dependence. Other sources for good overviews include LeSage and Pace (2009), Anselin 

(2010), Arbia (2014), Franzese et al. (2016) and Elhorst et al. (2016) . 

Of course, the same mis-specification-in-distribution form considerations that lead to inconsistent maximum likelihood 

estimation in aspatial ordered-response models also lead to inconsistent estimation in spatial ordered-response models 
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