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1. Introduction

To date, a large variety of state of charge (SOC) and state of
health (SOH) estimation algorithms for lithium-ion batteries are
presented in literature [1,2]. One of the most common algorithms
is the extended Kalman filter (EKF) [3–6]. In the field of battery SOC
estimation, the filter is commonly used to predict the battery
output voltage based on an equivalent circuit model (ECM) and a
coulomb counter. Therefore, the filter considers the relationship
between the SOC and the OCV. Here the OCV can be represented by
a model or look-up table (LUT) in the filter. This may lead to large
deviations compared to the measured OCV resulting in high
estimation errors or unstable estimation behaviour. Nevertheless,
the influence of the OCV on the SOC estimation is rarely
investigated in literature.

In [7] the influence of the temperature-dependent OCV of a
lithium–iron–phosphate (LFP) cell on the SOC estimation with an
EKF is investigated. Here, high errors resulting from an incorrect

OCV–SOC correlation are shown. To resolve this problem, different
OCVs at different temperatures are implemented in the battery
model.

Zheng et al. [8] showed, that the temperature dependency is
influenced by the OCV determination method. Here, the OCV,
determined by a constant charge/discharge with a current of C/20,
and the OCV, determined by 10% charge/discharge steps followed
by a 2 h relaxation time are compared and the influence on the SOC
estimation with an EKF is investigated. In their work, the OCV
shows a high deviation from the reference at lower temperatures,
and therefore, the estimation of the EKF is more accurate when the[7_TD$DIFF]
incremental [8_TD$DIFF](IC [9_TD$DIFF])-OCV is used. However, at 0 8C both the constant-
current (CC)-OCV and the IC-OCV method lead to high estimation
errors, whereas the regions lower than 10% and higher than 90% are
not considered.

The relationship between SOC and OCV is often assumed to be
constant over the lifetime of a lithium-ion battery (LIB) [9]. How-
ever, a change in shape of the OCV due to degradation effects is
observed in more recent publications [10–12]. These variations can
be explained by a change in the electrode morphology due to the
formation of dendritic deposits [13], loss of cycable lithium-ions
[14] or loss of active materials [14–16]. As a consequence, the
correlation between OCV and SOC changes during ageing [17] and
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A B S T R A C T

The Kalman filter is a commonly used state of charge estimation algorithm for lithium-ion cells.

Therefore, the filter uses the correlation between the open circuit voltage and the state of charge as

reference. The aforementioned relationship is largely affected by temperature and ageing. However, the

effect of cell ageing on the filter accuracy is often neglected in literature. In this work we show the

influence of an ageing dependent open circuit voltage on the state estimation with an extended Kalman

filter. Therefore, the open circuit voltage (OCV) determined by constant current charge/discharge, and

the OCV determined by charge/discharge steps, at four different temperatures in the range from 0 8C to

40 8C are considered. For each temperature, the open circuit voltage of cells with a state of health of

98.3%, 90.4% and 82.5% is changed during the validation process. Based on our measurements, we

observed a root mean square error of approximately 3.5% in state of charge when the open circuit voltage

of the new cell is compared to the aged cell. This value increases to a state of charge estimation error of up

to 6.5% when the extended Kalman filter is applied. However, the open circuit voltage dependency on the

estimation can be influenced by the filter tuning. In consequence, the open circuit voltage has to be

adapted to the cell condition to fulfil the requirements of an accurate and reliable state estimation with

open circuit voltage based algorithms.
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the relationship has to be updated for an accurate state estimation
based on the OCV [18]. In [19,20] the SOC of an aged cell is derived
from the OCV–SOC correlation of a new cell. In both cases an SOC
error of approximately 10% is observed.

As one can see, the OCV not only depends on the determination
method and cell temperature, but also on the ageing state of the
cell. Regarding the SOC estimation with EKFs, this behaviour is
often not considered in literature [1]. To address this issue, we
investigate the influence of OCVs at different ageing states on the
SOC estimation with an EKF at different temperatures in this paper.
Therefore, we take the two OCV determination methods into
account.

The work presented here is structured as follows: in Section 2
the cell model is explained and the used ECM is discussed.
Furthermore, OCV characteristics and the EKF are introduced. The
experimental of our work is presented in Section 3. Here, the
measurement setup, the ECM parameter identification and the
OCV determination methods are shown. Furthermore, this [10_TD$DIFF]section
summarises the validation method from our previous work [21]
and the filter tuning of the EKF. In Section 4, the dependencies of
the ECM parameters and the OCV are shown and the results
regarding the influence of the OCV on the estimation with an EKF
are discussed. To summarise our work, a conclusion is given in
Section 5.

2. Basics in cell modelling and Kalman filtering

2.1. Cell modelling

To investigate the ageing influence of the OCV on the estimation
with an EKF, an one RC term model (Fig. 1) is used as this ECM
provides the best compromise between accuracy and complexity
[22,23]. In this work the ECM model consists of one resistor Rdc1s

and one RC term. UT and IT corresponds to the terminal voltage and
current. Here, Rdc1s is the resistance calculated one second after a
0.25 [1_TD$DIFF]C current pulse from the voltage drop and the applied current.
Due to the short pulse time, the Rdc1s contains fast processes of the
charge transfer reactions in the cell. Instead of using the ohmic
resistance Ri as usually, the Rdc1s is used due to the state of charge
estimation algorithm sample time of one second (tstep = 1 s)
[23]. The RC term (R1, C1) describes diffusion effects consisting
of the diffusion capacitance and the diffusion resistance [24].

The OCV is defined as the difference between the half-cell
potentials of the cathode and anode when the applied cell current
is cut off and all polarisation effects are completely decayed. Here,
the half-cell potential is related to the amount of lithium
intercalated in each electrode. Consequently, the cell SOC changes
with the SOC of both electrodes [25]. Fig. 2 shows the OCV of
different commercial 18650 cells at 25 8C with common cathode
materials such as nickel–cobalt–aluminium (NCA), nickel–manga-
nese–cobalt (NMC) or lithium–iron–phosphate (LFP) and graphite
as the anode material. Therefore, the material composition of the
active materials defines the characteristic potential curves of the
OCV for the chemistry [14,26].

The high voltage drop at SOCs lower than approximately 10%
can be explained by the increasing potential of the delithiated
anode [17]. In applications this region is often avoided due to
practical reasons [15].

To determine the OCV two common methods are established in
practise [27]. The first method is the measurement of the cell
voltage at a CC charge and discharge (CC-OCV). The OCV–SOC
correlation is then calculated by averaging the charge and
discharge curve. Due to averaging, hysteresis effects and imped-
ance influences are minimised [10]. Hysteresis effects arise from
mechanical stress and different thermodynamic states at the same
SOC [28]. This effect is predominantly observed in LFP cells. The
charge throughput is normalised to the actual cell capacity [25]. In
literature, the applied current to measure the OCV varies from C/20
[15] to C/40 [14,25]. In general, a lower applied current leads to a
lower cell polarisation [29,27], thus, the OCV can be measured
more accurately. However, as the cell impedance can increase
significantly at very low and very high SOCs, a low cell polarisation
may not be ensured during measurement [14,29,27]. Therefore,
the CC methods can lead to high voltage errors and imprecise OCV
values in these regions. This effect increases at lower temperatures
[19] as well. To minimise the voltage error, the OCV can be
determined by the so-called incremental-OCV (IC-OCV). Here, the
cell is charged and discharged stepwise to defined SOCs. After each
step, the applied current is cut off and the OCV is measured when
the cell reached nearly equilibrium. The relaxation time is
dependent on SOC, temperature and cell age [30]. In literature,
the relaxation time varies from 1 h [31,29,12] to 24 h [19] and the
step size from 4% [19] to 10% [8]. If the same SOC for each cut-off
phase can be guaranteed [29], the charge and discharge OCV can be
averaged to minimise hysteresis effects [31].

2.2. Kalman filter

As shown in our previous work [23] a similar behaviour of
different Kalman filters (KF) can be observed. Thus we choose a EKF
for the analysis carried out in this work. In this work, the adaptive
approach of the EKF is not considered. As the adaptive extended
Kalman filter (AEKF) only adapts to the measurement noise and to
the model uncertainty, but not to changes in OCV.

The EKF belongs to the prediction–correction method. It first
predicts a state x̂

�
k (SOC and U1) in its state-space representation

and the corresponding covariance matrix P�k , considering a
linearised system Ak and the transition matrix Bk. In the next
step, the Kalman gain Kk is computed. Then, the EKF corrects the
prediction (x̂

þ
k and Pþk ) by weighting the difference between the

real measurement Uk and the predicted measurement result yk

with the Kk. Therefore, yk is calculated considering the linearised
measurement matrix Hk and the straight-way matrix Dk.
This calculation sequence [33,36] with the covariance of the
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Fig. 1. [5_TD$DIFF]ECM consisting of one resistor Rdc1s, one RC term (R1, C1) and the SOC-

dependent OCV.
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Fig. 2. OCVs of commercial 18650 lithium-ion cells with graphite vs. different

conventional cathode materials at 25 8C, measured by averaging the cell voltage at a

constant current charge and discharge.
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