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a b s t r a c t

The basic underlying assumption in robust design is that the experimental data have a normal distribu-
tion. However, in many practical cases, the experimental data may actually have an underlying distribu-
tion that is not normal. The existence of model departure can have a significant effect on the optimal
operating condition estimates of the control factors obtained in the robust design framework.
In this article, the effect of normal model departure on the optimal operating condition estimates is

investigated and a methodology is constructed to deal with the effect of normal model departure. We
provide simulation results which indicate that the sample mean and sample variance should not be used
as estimators if one suspects that the underlying distribution of the sample is not normal. Extensive
Monte Carlo simulations indicate that there exist attractive alternative estimators to the sample mean
and sample variance. These estimators exhibit solid performance when the data are normally distributed
and at the same time are quite insensitive to normal model departure.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important design methodologies for quality
improvement purposes is robust design. Taguchi’s robust design
methods often include orthogonal arrays and signal-to-noise (SN)
ratios. Although Taguchi’s methodology is a useful and convenient
tool in quality engineering, some of his work has drawn criticism.
For example, interaction effects are ignored and the SN ratio can-
not distinguish between inputs affecting the process mean from
those affecting the variance (Nair, 1992). Also, some of Taguchi’s
methodologies are intuitively sound but introduce statistical
biases at the same time. For more details, see Box (1985, 1988),
Vining and Myers (1990), Myers, Khuri, and Vining (1992), Tiao,
Bisgaard, Hill, Peña, and Stigler (2000), Gauri and Pal (2014),
Myers, Montgomery, and Anderson-Cook (2016) among others.

A great deal of work has been done to improve the various pit-
falls of Taguchi’s designs. Response surface methods for robust
design were eventually developed as a more effective alternative
to Taguchi’s methods. Response surface methods are excellent
tools for robust design and are particularly useful for process opti-
mization. Often, in practical applications, the objective of a
response surface approach is to select the levels of controllable

variables in order to minimize the variability in a response vari-
able, while keeping the mean of the response variable close to a
target value. In other applications, the goal of response surface
methods might be to minimize the variability while maximizing
or minimizing the mean response. In order to satisfy dual goals
such as these, the dual response surface approach was developed
and popularized (Vining & Myers, 1990). We should point out that
the dual response surface approach has been further studied by
several authors, including Copeland and Nelson (1996), Kim and
Lin (1998), Oyeyemi (2004), Lee and Park (2006), and Ouyang,
Ma, Byun, Wang, and Tu (2016) among others.

Other studies focus on the notions of optimization formulation
and multi-component objective functions. Ardakani and Wulff
(2013) and Ardakani (2016) develop a Pareto optimal methodology
in order to deal with the fact that the optimization formulation can
often contain multiple components that conflict with one another
and therefore need to be traded off. Rather than obtaining one opti-
mal point in the optimization step, the Pareto optimal framework
constructs an efficient frontier of optimal points. Each of the points
on the frontier is optimal in the sense that, at each of the points on
the frontier, one cannot improve on one component of the objec-
tive function without degrading it with respect to another compo-
nent. In most cases, the two conflicting variables are the estimated
mean response and estimated variance response.
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There has also been a great deal of research on using more effec-
tive loss functions in the dual response framework. Jin, Liu, and
Wang (2015) analyzed the optimal tolerance design problem based
on asymmetric quadratic quality loss assuming non-normal distri-
butions such as the triangular and trapezoidal distributions.
Hazrati-Marangaloo and Shahriari (2017) introduce an improved
quality loss function along with the incorporation of multivariate
ANOVA concepts. Furthermore, Rathod, Yadav, Rathore, and Jain
(2013) constructed a hybrid loss function that performs well even
if the response distribution is skewed and does not have a normal
distribution. Wan and Birch (2011) developed a robust regression
technique in order to improve the quality of model estimation.
They then applied this modelling technique to the process opti-
mization problem. Lastly, there has been some research related
to the design of experiments when there is non-normal response.
Biswas, Das, and Mandal (2015) considered the robustness of
designs. They investigate the robustness of the F-test for testing
the equality of treatment effects when the response has a non-
normal distribution. In addition, Woods, Overstall, Adamou, and
Waite (2017) illustrated that generalized linear models can be a
useful class of models in robust design when the response cannot
be modelled using the classical linear regression model
formulation.

The usual underlying assumption in the response surface
methodology is that the error term in the response function model
has a normal distribution. For example, see Sections 1.1.1 and
10.8.8 of Myers et al. (2016). This assumption then implies that
the responses, which are the sample observations, are normally
distributed with the mean response function as the mean (or loca-
tion) parameter and the variance response function as the variance
(or dispersion) parameter. However, the normality assumption in
the response surface framework is often tenuous and may not hold
in practice. It is well known that, under the normality assumption,
the sample mean and sample variance are efficient and unbiased
estimators of the location and dispersion parameters. However, a
violation of the normality assumption may have a significant effect
on the resulting estimated optimal operating conditions. Thus, a
method used in the response surface methodology that is less sen-
sitive to normal model departure could be quite useful in practical
applications of robust design.

It is important to distinguish the model departure case from the
similar situation where the data contain outliers and are possibly
contaminated. In the case of outliers and possible contamination,
there may be only one or more observations whose values seem
extreme relative to the rest of the observations in the sample. It
is unknown whether these unusual observations truly come from
the sampled population or if they are due to some kind of error
occurring during the data gathering process. The type of error caus-
ing the unusual value could range from a typographical error to an
environmental condition (for example, wrong temperature set-
ting). Regardless of the type of error, the contamination or outlier
phenomenon refers to specific observations in the sample taking
on unusual values relative to the majority of the observations in
the sample. Conversely, model departure refers to the case where
the underlying distribution of the population being sampled is dif-
ferent than that which is being assumed. Therefore, the model
departure phenomenon refers to the nature of the sample itself.
Despite these differences, the concepts of contamination and
model departure are related and we review the relevant robust
design research related to these issues as follows.

In the specific case where the data are subject to contamination,
Park and Cho (2003) proposed a robust design methodology using
outlier-resistant estimators of the mean and variance parameters.
Specifically, the median was used to estimate the mean parameter
(location) and the median absolute deviation (MAD) and interquar-
tile range (IQR) were used to estimate the standard deviation

parameter (scale). These estimators were then incorporated into
the robust design model, and their behavior was shown to be effi-
cient in the following sense. When the data were contaminated,
the generalized variance of the estimated optimal operating condi-
tions obtained when using the alternative estimators was signifi-
cantly less than the resulting generalized variance based on the
sample mean and sample variance. Recently, Park and Leeds
(2016) extended their work by considering a larger set of alterna-
tive methods. They investigated the effectiveness of the various
methods using simulations and provided conclusive evidence that
there exist alternative methods. However, Park and Leeds (2016)
considered the quality of the estimators only when outliers and
the possibility of contamination was present. The issue of normal
model departure was not investigated. Park and Cho (2003)
addressed the issue of normal model departure but a much smaller
set of alternative estimators were considered. In this paper, we
extend the work of Park and Cho (2003) and Park and Leeds
(2016) by investigating the performance of various methods in
the case of normal model departure.

2. Robust design based on dual response surfaces and the
proposed methodology

In what follows, we use the same assumptions, notations and
framework as in Park (2013), so only a brief review is given here.
We assume a system with a response Y which depends on the
levels of the k control factors x ¼ ðx1; x2; . . . ; xkÞ. Thus, Y is a func-
tion of x, that is, Y ¼ Fðx1; x2; . . . ; xkÞ, where the functional structure
of the function Fð�Þ is assumed to be unknown. The levels of each
control factor xi for i ¼ 1;2; . . . ; k are continuous and quantitative,
and can be controlled by the experimenter. The process mean
and variance response functions are assumed to have the dual
quadratic response surface forms shown below.

Thus, the process mean function can be written as

MðxÞ ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

Xk

j¼i

bijxixj þ �m ð1Þ

and the process variance function can be written as

VðxÞ ¼ g0 þ
Xk

i¼1

gixi þ
Xk

i¼1

Xk

j¼i

gijxixj þ �v : ð2Þ

Note that in the standard dual response framework, it is
assumed that the error terms �m and �v in (1) and (2) are normally
distributed with mean zero. Addressing this crucial assumption is
the subject of this study. For more details on the normality
assumption, one is referred to Sections 1.1.1 and 10.8.8 of Myers
et al. (2016).

Let bMðxÞ and bV ðxÞ represent the fitted dual response functions
for the mean and variance respectively. Then the fitted dual
response functions are straightforward:

bMðxÞ ¼ b̂0 þ
Xk

i¼1

b̂ixi þ
Xk

i¼1

Xk

j¼i

b̂ijxixj ð3Þ

and

bV ðxÞ ¼ ĝ0 þ
Xk

i¼1

ĝixi þ
Xk

i¼1

Xk

j¼i

ĝijxixj: ð4Þ

It is important to point that the resulting fitted response functions
are quite useful because they allow for the calculation of the esti-
mated mean and variance response associated with any new design
point rather than only those used in the original experiment.

Given a candidate pair of location and scale estimators, we can
use the second-order polynomial regression models to estimate
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