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a b s t r a c t

This paper proposed the new Isoparametric Reproducing Kernel Particle Method (IsoRKPM) for modeling
nonlinear plate and shell deformation problems. The Reproducing Kernel shape functions are con-
structed on a two-dimensional parent domain. Following the concept of isoparametric mapping, the RK
shape functions are directly used to approximate the plate geometry. A High Order Nodal Integration
(HONI) is developed to integrate the Galerkin weak form of the Mindlin plate equilibrium equations. The
proposed IsoRKPM with HONI is applied to solve several benchmark problems. Both modal and
convergence analyses show that HONI provides more stable and accurate solutions than the nodal
integration method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Finite Element Method (FEM) is a well developed method for
analyzing engineering problems involving structural members,
such as plates and shells [1,2]. Recent focus of these researches
are directed to the geometric exactness [3,4] and hybrid numerical
integration methods [5]. Although the FEM has been efficiently
used to model finite deformation problems with material and
geometric non-linearity, it suffers mesh distortion problem when
large deformation is encountered [6]. Although some advanced
FEM algorithms allow re-meshing during computation [7], the
mesh distortion and mesh dependency still affect the behavior of
the structure.

The development of meshfree methods started from the
Smooth Particle Hydrodynamics (SPH) method [8,9], which was
first used for the modeling of astronomical problem. The SPH
formulation is later extended to the field of solid and fluid
dynamics [10,11]. Another group of meshfree methods, including
the Element Free Galerkin Method (EFG) [12] and Reproducing
Kernel Particle Method (RKPM) [13] are developed to improve the
accuracy of the original SPH approximation. All the meshfree
methods have the characteristic of constructing the approximation
without the need of a mesh. Therefore, the meshfree methods can
be more suitable for dealing with problems with complex geome-
try and large deformations. The meshfree method is also employed
to plate and shell problems. Krysl and Belytschko used shape
function with quadratic basis and larger domains of influence to

prevent the membrane locking [14]. In 2000, Li et al. introduced a
highly smooth 3-D RK shape function for plate analysis, which
mitigates the locking phenomenon [15]. Also, Li et al. [16] and
Soric et al. [17] applied different orders of interpolation functions
for in-plane and transverse displacement to eliminate the thick-
ness locking. Alternatively, the locking phenomenon can also be
suppressed by using an appropriate integration technique, such as
stabilized conforming nodal integration [18,19]. Another issue of
the meshfree method is the lack of Kronecker delta property of
meshfree shape functions, which leads to the difficulty of applying
the essential boundary conditions. Chen et al. [20,21] introduced a
transformation technique to implement the essential boundary
condition. In 2008, Wang and Chen proposed a Hermite Reprodu-
cing Kernel Particle Method (HRKPM) [22–24] for Kirchhoff plates
to impose the Kirchhoff Mode Reproducing Condition (KMRC), and
the HRKPM is also applied for the buckling analysis of thin
Kirchhoff plates in 2012 [25].

When modeling a shell structure with a complex geometry, the
general RKPM has its inherent drawback as the plates or shells are
co-plane with the basis of RK approximation. This problem will
lead to a singular system in the construction of RK shape function.
In 2006, Chen and Wang [26] proposed two methods to avoid the
singularity of the moment matrix in the three-dimensional RK
shape function. The first method is the dummy nodes technique,
which uses the physical and dummy nodes on the shell surface to
formulate the RK shape function. The second method is the
pseudo-inverse method, which requires solving the eigenvalues
of the moment matrix. In 2000, Noguchi et al. [27] introduced a
parametric mapping technique, which projects a two-dimensional
surface discretized by Element Free Galerkin (EFG) on to the three-
dimensional middle surface of the shell by using the Lagrange
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polynomial functions. Under this framework, the sample points,
which are used to construct the Lagrange polynomial functions,
can be different from the discretization points used to build the
EFG shape functions. This method is similar to FEM when an
isoparametric element is used.

In this study, we use this concept to construct RK approxima-
tion. First, we build a two-dimensional space to construct the
Reproducing Kernel shape function, which is used to approximate
the state and field variables of the Mindlin plate formulation. The
geometry of the shell can then be built in this two-dimensional
coordinate system by using the same discretization points of the
shape function to perform the RK approximation for the surface. A
transformation method is introduced to remove the error of the
geometry due to the lack of Kronecker delta property of the RK
shape functions. This method ensures the continuity of RK
approximation and flexibility to change the order of approxima-
tion which makes the method efficient for modeling complex
geometry and discontinuities.

The paper is organized as follows. Section 2 introduces the
basic formulation of the Reproducing Kernel Particle Method and
the Mindlin plate theory. In Section 3, the isoparametric RK
approximation is constructed to define the surface. In Section 4,
the equilibrium based on the local coordinate is introduced. Then
the Galerkin-based discrete equations with RKPM discretization
are derived. In the end of Section 4, a High Order Nodal Integration
method is applied to the discrete equations. In Section 5, several
numerical examples for linear and nonlinear analysis are pre-
sented to demonstrate the accuracy and robustness of the pro-
posed method. Finally the conclusions are given in Section 6.

2. Basic formulation

2.1. General Reproducing Kernel Particle Method

The function u(x) approximated by RK approximation can be
presented as a linear combination of the RK shape functions
Φaðx; x�xIÞ and the associated nodal coefficients uI , which is

uhðxÞ ¼ ∑
NP

I ¼ 1
Φaðx; x�xIÞuI ð1Þ

where uhðxÞ is the approximation of function u(x), NP is the
number of RK points in the domain Ω and xI is the coordinate of
I-th particle. The RK shape functions Φaðx; x�xIÞ are defined as

Φaðx; x�xIÞ ¼ Cðx; x�xIÞϕaðx�xIÞ ð2Þ
where ϕa is the kernel function with support size a, and Cðx; x�xIÞ
is the correction function [13], which is an N-th order polynomial
function

Cðx; x�xIÞ ¼ ∑
N

iþ jþk ¼ 0
bijkðxÞðx�xIÞiðy�yIÞjðz�zIÞk ¼HT ðx�xIÞbðxÞ

ð3Þ
and Hðx�xIÞ and bðxÞ are the polynomial vector and the associated
unknown coefficient vector respectively. Introducing the N-th
order consistency condition,

∑
NP

I ¼ 1
ΦIðxÞxiIyjIzkI ¼ xiyjzk 0r iþ jþkrN ð4Þ

then the coefficient vector can be calculated by solving the
following local equation:

bðxÞ ¼M�1ðxÞHð0Þ ð5Þ
where

HT ð0Þ ¼ ½1;0;…;0� ð6Þ

and

MðxÞ ¼ ∑
NP

J ¼ 1
Hðx�xJÞHT ðx�xJÞϕaðx�xJÞ ð7Þ

Substituting Eq. (5) into (3), and Eq. (2) can be presented as

ΦIðx; x�xIÞ ¼HT ð0ÞM�1ðxÞHðx�xIÞϕaðx�xIÞ ð8Þ

In this paper, a cubic B-spline function will be applied as the
kernel function.

ϕaðrÞ ¼
2
3�4r2þ4r3 for 0r jrjr0:5
4
3�4rþ4r2�4

3r
3 for 0:5r jrjr1

0 for jrj41

8><
>: ð9Þ

where r¼ ðx�xIÞ=a.

2.2. Mindlin plate theory

The Mindlin plate theory [28] assumes that the plane normal to
the middle surface of the plate before deformation will remain
straight but will not remain normal to the middle surface, which is
shown in Fig. 1.

The transverse shear strain of the plate is considered by
introducing two additional degrees of freedom, rotational para-
meters θx and θy. In order to construct the local equilibrium
equations, the local coordinate system x, y, z is constructed based
on the tangent and normal directions of the middle surface of the
plate, which is shown in Fig. 2. The displacement in the local
coordinate system can be expressed as

u¼
u

v
w

2
64

3
75¼

u0

v0
w0

2
64

3
75þz

θy

�θx

0

2
64

3
75 ð10Þ

where the vector [u v w]T are the displacements in e′1, e′2, e′3
direction, and the index “0” denotes the variables measured at the
middle surface of the plate. The two variables θx and θy are the
rotations about x-, and y-axes respectively.

In Mindlin plate, the strain normal to the local x–y surface is
neglected. Therefore the general strain vector in local coordinates

Fig. 1. Cross plane assumption.

Fig. 2. The local coordinate system based on the tangent and normal directions of
the middle surface of the plate.
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