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a b s t r a c t

This paper presents an inverse reconstruction procedure to determine the inner boundary location of
heat conduction composite walls from the measurement data of temperature and heat flux on the
exterior boundary. Our procedure uses a meshless forward solver that was developed for solving
inhomogeneous heat transfer problems across a multilayer composite wall with Cauchy conditions. The
forward solver uses the radial basis functions (RBFs) approximation in both time and space in a unified
fashion, and hence is well suited for inverse problems. In this work, we consider that the length of the
inner layer of the composite wall may vary caused by the material erosion at very high temperature such
as in iron-making blast furnaces. In order to mitigate the ill-posed inverse problem, we use the Tikhonov
regularization technique to obtain a stable and accurate numerical approximation of the moving
boundary. Numerical experiments for a number of examples are presented to demonstrate the effective-
ness of our inverse procedure. It can be observed that the error of the inverse solution is smaller or at the
same level of noises in the simulated measurement data, demonstrating that our inverse procedure is
effective and stable with respect to noisy data for moving boundary problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the determination of an erosion
boundary in an inhomogeneous heat transfer problem with Cauchy
condition.

Erosion of material is often encountered in engineering sys-
tems that involve operations at very high temperature such as
iron-making blasts. Iron-making blast furnaces are usually made of
composite material which consists of more than one material with
properties of high temperature resistance, heat insulation and a
high strength. During the production processes, the inner layer is
in direct contact with the melted iron, and is subject to constant
erosion due to the extreme hashing conditions, leading to a change
in the thickness of the inner layer. It is therefore, important to
monitor the eroded thickness of the accreted refractory wall in

order to avoid molten metal breaking out. Because of the inacces-
sibility to the inner surface of the furnaces, we need to somehow
reconstruct it through an inverse procedure, which is a very
important topic in the nondestructive evaluations [1]. In such an
inverse procedure, we can only depend on the time-history of
the temperature and heat flux data on the outer surface of the
container to reconstruct the dynamic changes of the inner bound-
ary. Such an inverse boundary problem belongs to a family of
problems that have inherited the property of being ill-posed in the
Hadamard sense [2].

In recent years, the boundary identification has already been
researched extensively [3–19]. To perform inverse analyses, one
needs an efficient forward solver. Finite difference methods (FDM)
and finite element methods (FEM) have been used as a forward
solver to reconstruct the erosion of boundary [3–6]. When large
numbers of grids in these methods are required for problems with
moving boundary, mesh distortion may occur [20]. Hence various
types of efficient meshfree methods have been recently presented
[22–33]. As the presentation of meshfree collocation methods
[20,21], many meshfree methods have been proposed to solve
the boundary identification problem. The method of fundamental
solution (MFS) has been adopted to deal with this problem [11–16].
The results in these references are effective and stable for homo-
geneous equations. The least-squares collocation meshless method
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[7], radial point interpolation method [8] and radial basis function
collocation method [9] have been presented to solve this recon-
struction problem.

In this work, we aim to device an inverse reconstruction
procedure to determine the inner boundary location of heat
conduction composite walls from the measurement date of tem-
perature and heat flux on the exterior boundary, known as Cauchy
conditions. Our procedure uses a meshless forward solver for
inhomogeneous heat transfer problems across a multilayer com-
posite wall. The forward solver uses the radial basis functions
(RBFs) approximation in both time and space in a unified fashion,
and hence it is well suited for inverse problems. In this work, we
consider that the length of the inner layer of the composite wall
may vary caused by material erosion at very high temperature
such as in iron-making blast furnaces. First, we consider that the
heat transfer across a composite wall is assumed to be infinitely
long in length direction and hence the heat source and any heat
exchanges are also independent of length [34]. We assume that
the heat conducts only through the composite wall and thus it is
simplified to a one-dimensional problem in space. We then
propose unified space–time boundary identification method based
on RBFs, which treat time as a dimension in the same way as the
spatial coordinate. Substituting the governing equations, Cauchy
conditions and the interface conditions, we treat three layers as a
whole to set a single set of linear algebraic system equations to
avoid the accumulation of numerical error due to layer-by-layer
recursion process [15]. To overcome the ill-posedness, we use the
discrete Tikhonov regularization technique to regularize the
ill-conditioned linear system of equations.

The paper is organized as follows. In Section 2, we introduce
the setting of a boundary identification problem. Section 3 pre-
sents the unified space–time method. Section 4 introduces the
inverse procedure. Five numerical experiments are conducted to
examine the accuracy and stability of our proposed method in
Section 5. Finally, in Section 6 we give conclusions.

2. The setting of the problem

The space–time domain of a boundary identification problem
in a three-layer composite wall is shown schematically in Fig. 1.
We consider a typical heat transfer inverse problem with a set
of Cauchy boundary conditions (both the temperature and flux
are all specified) on the known boundary l1. The moving boundary
function (in terms of both space and time) is to be determined.

The governing equations for the temperature distribution in the
inhomogeneous heat transfer media with three layers are governed
by the following equations [34,35]:

∂u1ðx; tÞ
∂t

¼ a1
∂2u1ðx; tÞ

∂x2
þ f 1ðxÞ in D1 ð1Þ

∂u2ðx; tÞ
∂t

¼ a2
∂2u2ðx; tÞ

∂x2
þ f 2ðxÞ in D2 ð2Þ

∂u3ðx; tÞ
∂t

¼ a3
∂2u3ðx; tÞ

∂x2
þ f 3ðxÞ in D3 ð3Þ

where the temperature field in each layer is denoted by function
ui(x,t) (i¼1,2,3), T represents the maximum time of interest for the
time evolution of our inverse problem, f1(x), f2(x) and f3(x) are the
heat source in each of the three layers. D1¼[l1,l2]� [0,T], D2¼
[l2,l3]� [0,T], D3¼[l3,s(t)]� [0,T] are the space–time subdomains.
The thermal diffusion coefficient ai (i¼1,2,3) in each layer can be
calculated using the equation ai ¼ ki=ρici, where ki is the thermal
conductivity coefficient, ρi is the density and ci is the specific heat
capacity in each layer.

The Cauchy conditions are assumed to be given on l1:

u1ðl1; tÞ ¼ u1ðl1; tÞ; 0rtrT ð4Þ

∂u1ðl1; tÞ
∂x

¼ q1ðl1; tÞ; 0rtrT ð5Þ

and continuity conditions in the interfaces are

u1ðl2; tÞ ¼ u2ðl2; tÞ; 0rtrT ð6Þ

k1
∂u1ðl2; tÞ

∂x
¼ k2

∂u2ðl2; tÞ
∂x

; 0rtrT ð7Þ

u2ðl3; tÞ ¼ u3ðl3; tÞ; 0rtrT ð8Þ

k2
∂u2ðl3; tÞ

∂x
¼ k3

∂u3ðl3; tÞ
∂x

; 0rtrT ð9Þ

Reconstruction of moving boundary is to determine the moving
boundary function s(t) from a condition

u3ðsðtÞ; tÞ ¼ usðtÞ ð10Þ
where us(t) is a given function or a constant that is the melting
point of the medium in the inner layer 3.

Because the Cauchy problems are well known for highly
ill-posedness, a proper regularization is required for stable and
reliable solution.

3. The unified space–time method

For unsteady state heat transfer problems, the temperature
fields are the function of the position and the time. In our unified
space*-time approximation for the temperature field, we treat the
time as a dimension similar to the space. Following the idea of
radial basis functions [21,36,37], we assume that an approximation
to the temperature solution for each layer can be expressed as
follows:

û1ðx; tÞ ¼ ∑
N1

j ¼ 1
α1jφ1jðx; tÞ; ðx; tÞAD1 ð11Þ

û2ðx; tÞ ¼ ∑
N2

j ¼ 1
α2jφ2jðx; tÞ; ðx; tÞAD2 ð12Þ

û3ðx; tÞ ¼ ∑
N3

j ¼ 1
α3jφ3jðx; tÞ; ðx; tÞAD3 ð13Þ

where φij(x,t) (i¼1,2,3) is the RBF function and αij(x,t) (i¼1,2,3)
is the coefficient. We set some interior points in each space–
time domain for each layer for collocation purposes so that the
coefficient αij(x,t) can be determined. In our scheme, we use the
Kansa method [38,39]:

φi ¼ φiðrÞ ð14ÞFig. 1. The space–time domain.
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