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Abstract

The aim of this paper is to generalize the well-known Halton sequences from integer bases to rational number bases and to
translate this concept of Halton-type sequences in rational bases from the ring of integers to the ring of polynomials over a finite
field. These two new classes of Halton-type sequences are low-discrepancy sequences. More exactly, the first class, based on the
ring of integers, satisfies the discrepancy bounds that were recently obtained by Atanassov for the ordinary Halton sequence, and
the second class, based on the ring of polynomials over a finite field, satisfies the discrepancy bounds that were recently introduced
by Tezuka and by Faure & Lemieux for the generalized Niederreiter sequences.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

For applications – for instance in finance, physics, or digital imaging – one relies on point distributions in the
multidimensional unit cube that are uniformly spread. One important measure for the uniformity of a point set
x0, x1, . . . , xN−1 of N points in [0, 1]

s is the star-discrepancy D∗

N , defined by

D∗

N (x0, . . . , xN−1) = sup
y∈(0,1]s

#{0 ≤ n < N : x (i)
n < y(i), i = 1, . . . , s}

N
−

s
i=1

y(i)

 ,
where x (i)

n and y(i) denote the i th components of xn and y. For an infinite sequence (xn)n≥0 in [0, 1]
s , the star-

discrepancy D∗

N is defined via the first N elements of the sequence. The star-discrepancy appears as one main
factor in the celebrated Koksma–Hlawka inequality. This inequality gives an upper bound of the integration error
of a quadrature rule that heavily depends on the star-discrepancy of the sampling points. Hence, the smaller the
discrepancy the better the approximation of the integral. Concerning this measure of uniformity the best explicit
examples of sequences in dimension s satisfy discrepancy bounds in the style of

N D∗

N ≤ c logs N + O(logs−1 N ) (1)
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where both constants – c and the implied one – are independent of N . We call sequences that satisfy (1) low-
discrepancy sequences. (For further details on numerical integration and discrepancy we refer the reader to the
excellent monographs [5,13].)

The probably most basic one-dimensional low-discrepancy sequence is the well-known van der Corput sequence
in an integer base b greater than 1. The nth point xn of the sequence is obtained by applying the b-adic Monna map ϕb,
which is often called the radical inverse function in base b, to the nonnegative integer n. The function ϕb : N0 → [0, 1]

is given by

n →
n0

b
+

n1

b2 +
n2

b3 + · · ·

where

n = n0 + n1b + n2b2
+ · · · with nr ∈ {0, 1, . . . , b − 1} (2)

is the b-adic expansion of n. One interesting property of this sequence is that one can easily build multidimensional
low-discrepancy sequences by concatenating van der Corput sequences in pairwise coprime bases b1, b2, . . . , bs .
Such a sequence (ϕb1(n), ϕb2(n), . . . , ϕbs (n))n≥0 is well-known as Halton sequence in bases (b1, b2, . . . , bs). In the
literature varied generalizations of the van der Corput sequences and their multidimensional forms were investigated.
The majority of them can be categorized in the following three types.

1. Generalizations by applying operations on the digits n0, n1, . . . before inserting them in the radical inverse function.
An example utilizes a permutation on {0, 1, . . . , b − 1} to each digit. This generalization was introduced by Faure
and its multidimensional versions are known as generalized Halton sequences. Another example allows linear
operations on the digit vector (n0, n1, n2, . . .), before its entries are inserted in the radical inverse function. This
way linearly scrambled van der Corput (or Halton) sequences are obtained.

2. Generalizations by using different expansions for the non-negative integer n and defining a proper radical inverse
function. In [6] (see also [4]) a radical inverse function based on so-called Cantor expansions was introduced and
investigated. In several papers van der Corput sequences based on so-called β-expansions were introduced and
studied (see for example [3,16,17,19]).

3. Generalizations by changing the domain N0 of the Monna map. In [15] Niederreiter and Yeo introduced so-called
Halton-type sequences from global function fields by defining a proper Monna map in a special subring of a global
function field. Corresponding Halton-type sequences in algebraic number fields were introduced and investigated
by Levin [11].

For details on previous generalizations of van der Corput and Halton sequences, particularly for the first two items
above, the reader is referred to the overviewing article [7] and the references therein.

In this paper we extend the family of generalized van der Corput sequences in two directions. Firstly we introduce
a generalization of Halton sequences in the sense of item 2 by using expansions of integers in rational bases. Secondly
we work out the corresponding framework for this Halton sequences in rational bases when switching the domain of
the corresponding Monna map from Z to the ring of polynomials over a finite field, which represents a generalization
in the sense of item 3. The paper is organized as follows. We start with introducing proper expansions in the style
of (2) for integers and for polynomials in rational bases in Section 2, before we define the radical inverse function
in rational bases and the new Halton-type sequences in Section 3. This section also gives discrepancy bounds for the
new sequences in Theorems 3 and 4 as well as short discussions on the discrepancy of the new Halton-type sequences
in rational bases.

Throughout the paper q always denotes a prime power pr with p ∈ P and r ∈ N0, Fq stands for the finite field with

q elements, Fq [X ] for the set of polynomials in X with coefficients in Fq . Vectors as (v1, . . . , vs), or (x (1)
n , . . . , x (s)

n )

in Rs are often abbreviated by bold symbols as v or xn .

2. An expansion in rational bases

Let b ≥ 2 be a rational integer. It is well-known that every rational integer z has a b-adic expansion of the form

z =

∞
r=0

ar br with ar ∈ {0, 1, . . . , b − 1} for r ∈ N0. (3)
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