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Abstract

A high performance and high quality pseudorandom number generator is presented in this paper. It takes less than one clock
cycle to generate a pseudorandom byte on an Intel core i3 processor and passes all the 6 TestU01 batteries of tests. The generator can
work in either deterministic mode or non-deterministic mode. When working in deterministic mode, it can be used for high speed
data encryption and in other applications that require deterministic and reproducible pseudorandom sequences. When working in
non-deterministic mode, the generator behaves much like a true random number generator, but with the advantages of low cost,
high performance, and general availability. It is good for many applications that currently rely on true random number generators
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

A pseudorandom number generator (PRNG) usually generates pseudorandom numbers in a deterministic way.
This makes it possible to reproduce a pseudorandom sequence, which is necessary or useful in some applications,
such as data encryption and modeling. A true random number generator (TRNG), on the other hand, works in a non-
deterministic way. Non-deterministic random number generation is preferred in applications such as gambling and
lottery, where fairness is essential and manipulation should not be possible. TRNGs, however, are still not widely
adopted for several reasons: too expensive; relatively slow (although high speed TRNGs such as quantum random
number generators can be used, please see http://qrng.physik.hu-berlin.de/); and not generally available.

In this paper we propose a high performance and high quality pseudorandom number generator. This new
generator, referred to as MaD1, is mainly designed for secure applications, but can also be used in non-cryptographic
applications. MaD1 uses a high quality byte-oriented pseudorandom permutation function for key scheduling and
state initialization. This renders an excellent avalanche effect that is comparable to those of standard hash functions
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Fig. 2.1. Data structure.

and helps the generator to withstand a large number of attacks. MaD1 demonstrates excellent statistical property and
clears all the 6 TestU01 batteries of tests [11]. It takes the advantages of modern 64-bit platforms and uses an integer-
oriented pseudorandom mapping function for state transition and pseudorandom number generation. On an Intel core
i3 processor, the generator can reach a speed close to 0.6 clock cycle per byte.

Besides deterministic pseudorandom number generation, MaD1 can also work in non-deterministic mode. In
this mode, the generator behaves much like a true random number generator by periodically querying some non-
deterministic random source and using it as an unpredictable entropy input. Running in this mode has virtually no
impact on the cost or performance. Nor does it affect the availability or usability of the generator since no dedicated
device or special setup is needed. Many applications currently relying on true random number generators can benefit
from this mode.

The rest of this paper is structured as follows. In Section 2, we describe the algorithm in detail. Next, in Section 3,
we present the security analysis. Then, in Sections 4 and 5, we give the statistical testing results and performance
testing results respectively. Finally, we conclude in Section 6.

2. Algorithm details

In this section we present the algorithm details. All components will be described using pseudo code that largely
follows the conventions of C/C++ programming language. Hexadecimal numbers are prefixed by “0x” and all
variables and constants are unsigned integers in little endian.

2.1. MARC-bb

In MaD1, we use an iteration-reduced version of MARC [25], referred to as MARC-bb (bb stands for building
block), for key scheduling and state initialization. The only difference between MARC-bb and MARC is that the
MARC-bb key scheduling algorithm (KSA) iterates 320 times while the MARC KSA iterates 576 times to shuffle the
identity permutation table. The reason we choose MARC-bb over MARC is that the MARC-bb KSA already has an
avalanche effect comparable to that of standard hash functions (see comparison results in [14]). The additional 256
iterations implemented in MARC KSA are mainly for increasing the security margin, which is achieved in MaD1
through the additional shuffling introduced after the key scheduling. The complete MARC-bb algorithm is given in
Listing 1.

2.2. Data structure

MaD1 maintains a data structure shown in Fig. 2.1, which comprises two 512-byte state tables, denoted as Sa and
Sb, four 64-bit integers, denoted as a, b, c, and d, and one 1024-byte output sequence buffer, denoted as T. The two
state tables Sa and Sb and the four 64-bit integers a, b, c, and d construct the internal state. The output sequence
buffer T is used for buffering pseudorandom numbers generated from the internal state. The first 256 bytes of Sa are
also referred to as state table S to indicate that they play the role of the permutation table S in key scheduling. The
concatenation of Sa and Sb is sometimes used as a large 1024-byte state table, referred to as Sw.
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