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In this paper,we establish the lower semicontinuity of the solutionmapping and the approximate solution
mapping for parametric fixed point problems under some suitable conditions. As applications, the lower
semicontinuity result applies to the parametric vector quasi-equilibrium problem, and allows to prove
the existence of solutions for generalized Stackelberg games.
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1. Introduction

The semicontinuity of solution mappings of vector equilib-
rium problems has been investigated by several authors, see
[1–4,6,9,12–14,16,17] and the references therein. Recently, in or-
der to show the semicontinuity of the solution mappings for the
parametric (vector) quasi-equilibrium problems, all the solution
mappings of the parametric fixed point problems are assumed
to be lower semicontinuous in the literature [1–3]. We note that
in the literature mentioned above, the authors have not given
any conditions to guarantee the lower semicontinuity of the so-
lution mappings of the parametric fixed point problems. On the
other hand, it is difficult to obtain the explicit solutions for some
real problems when the data concerned with the problems are
perturbed by noise and so the mathematical models are usually
solved by numerical methods for approximating the exact solu-
tions. Therefore, one natural question is: canweprovide conditions
ensuring the lower semicontinuity of the (approximate) solution
mappings?

The main purpose of this paper is to make a new attempt
to establish the lower semicontinuity of the solution mapping
and the approximate solution mapping for parametric fixed point
problems under suitable conditions. As applications, the lower
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semicontinuity result applies to the parametric vector quasi-
equilibrium problem, and allows to prove the existence of solu-
tions for generalized Stackelberg games.

2. Preliminaries

Throughout this paper, unless otherwise specified, let Λ and
X be two normed vector spaces, R+ = {x ∈ R : x ≥ 0}, R0

+
=

{x ∈ R : x > 0} and N = {1, 2, . . .}. Let A be a nonempty subset
of X and T : A × Λ → 2A be a set-valued mapping. For λ ∈ Λ, we
consider the following parametric fixed point problem consisting
of finding x0 ∈ A such that

(PFPP) x0 ∈ T (x0, λ) .

For λ ∈ Λ, let S (λ) denote the set of all solutions of (PFPP), i.e.

S (λ) = {x ∈ A : x ∈ T (x, λ)} .

For (λ, ε) ∈ Λ × R+, let E (λ, ε) denote the set of all ε-
approximate solutions of (PFPP), i.e.

E (λ, ε) = {x ∈ A : d (x, T (x, λ)) ≤ ε} ,

where d (x, T (x, λ)) = infy∈T (x,λ)d (x, y) and d (x, y) = ∥x − y∥.
Denote the boundary of D by ∂D, the complement of D by Dc ,

the closure of D by clD and the interior of D by intD.

Definition 2.1 ([15]). A nonempty convex subset D of X is said
to be rotund if the boundary of D does not contain line segments,
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i.e., for any x1, x2 ∈ D with x1 ̸= x2, (x1, x2) ∩ (∂D)c ̸= ∅, where
(x1, x2) = {λx1 + (1 − λ) x2 : λ ∈ (0, 1)} .

Remark 2.1. Let D be a nonempty convex subset of X . Then it is
easy to see that D is rotund if and only if for any x1, x2 ∈ D with
x1 ̸= x2, there exists λ0 ∈ (0, 1) such that λ0x1 + (1 − λ0) x2 ∈

intD. Let D =
{
(x, y) ∈ R2

: x2 + y2 ≤ 1
}
. Then it is clear that D is

rotund.

Definition 2.2. Let ∆ and ∆1 be two topological vector spaces. A
set-valued mapping Φ : ∆ → 2∆1 is said to be

(i) upper semicontinuous (u.s.c.) at u0 ∈ ∆ if, for any neighbor-
hood V of Φ (u0), there exists a neighborhood U (u0) of u0
such that for every u ∈ U (u0), Φ (u) ⊆ V .

(ii) lower semicontinuous (l.s.c.) at u0 ∈ ∆ if, for any x ∈ Φ (u0)
and any neighborhood V of x, there exists a neighborhood
U (u0) of u0 such that for every u ∈ U (u0), Φ (u) ∩ V ̸= ∅.

(iii) Hausdorff lower semicontinuous (H-l.s.c.) at u0 ∈ T if, for any
neighborhoodV of 0 ∈ T1, there exists a neighborhoodU (u0)
of u0 such that for every u ∈ U (u0), G (u0) ⊆ G (u) + V .

(iv) convex if, the graph of Φ , i.e., Graph (Φ) := {(x, y) ∈

∆ × ∆1 : y ∈ Φ (x)} is a convex set in ∆ × ∆1.
(v) rotund if, Graph (Φ) is convex and for any (x1, y1) , (x2, y2) ∈

Graph (Φ) with x1 ̸= x2, y1 ̸= y2, we have

((x1, y1) , (x2, y2)) ∩ (∂Graph (Φ))c ̸= ∅,

where ((x1, y1) , (x2, y2)) = {λ (x1, y1) + (1 − λ) (x2, y2) :

λ ∈ (0, 1)} .

We say thatΦ is u.s.c. and l.s.c. on∆ if it is u.s.c. and l.s.c. at each
point u ∈ ∆, respectively. Φ is continuous on ∆ if it is both u.s.c.
and l.s.c. on ∆.

Remark 2.2. Obviously, if Φ : ∆ → 2∆1 is convex, then Φ (x) is a
convex set for any x ∈ ∆.

Lemma 2.1 ([5]). A set-valued mapping Φ : ∆ → 2∆1 is l.s.c. at
u0 ∈ ∆ if and only if for any sequence {un} ⊆ ∆ with un → u0 and
for any x0 ∈ Φ (u0), there exists xn ∈ Φ (un) such that xn → x0.

Lemma 2.2 ([10]). Let Φ : ∆ → 2∆1 be a set-valued mapping. For
any given u0 ∈ ∆, if Φ (u0) is compact, then Φ is u.s.c. at u0 ∈ ∆

if and only if for any sequence {un} ⊆ ∆ with un → u0 and for any
xn ∈ Φ (un), there exist x0 ∈ Φ (u0) and a subsequence

{
xnk

}
of {xn}

such that xnk → x0.

Lemma 2.3 (Kakutani–Fan–Glicksberg Fixed Point Theorem [7,8]).
Let K be a nonempty compact convex subset of a locally convex
Hausdorff topological vector space X and let F : K → 2K be
a u.s.c. set-valued mapping with nonempty compact convex values.
Then there exists x0 ∈ K such that x0 ∈ F (x0).

3. The main results

Lemma 3.1. Let X be a reflexive Banach space, B be the closed unit
ball of X and A be a nonempty closed convex subset of X. For given
δ > 0, if a + δB ⊆ A + δB, then a ∈ A.

Proof. Suppose on the contrary that a ̸∈ A. Since A is closed, one
has

d (a, A) = infy∈A ∥a − y∥ > 0.

Noting that X is a reflexive Banach space and A is a nonempty
closed convex subset of X , there exists β ∈ A such that

d (a, A) = inf
y∈A

∥a − y∥ = ∥a − β∥ > 0. (1)

Let λ =
∥a−β∥

δ+∥a−β∥
. We choose h ∈ X such that a = λh + (1 − λ) β .

Then h =
a
λ

+ β −
β

λ
.

We claim that ∥h − y∥ ≥ ∥h − β∥ for any y ∈ A. It follows from
(1) that

∥a − y∥ ≥ ∥a − β∥ , ∀y ∈ A. (2)

For any y ∈ A, since y, β ∈ A and A is convex, we have λy +

(1 − λ) β ∈ A. By (2), we know that ∥a − (λy + (1 − λ) β)∥ ≥

∥a − β∥ and so

∥h − y∥ ≥ ∥h − β∥ , ∀y ∈ A. (3)

On the other hand,

∥h − a∥ =

 a
λ

+ β −
β

λ
− a

 =

(
1
λ

− 1
)

∥a − β∥ = δ

and so h ∈ a + δB. Noting that (3) and

∥h − β∥ =

 a
λ

+ β −
β

λ
− β

 =
1
λ

∥a − β∥ = δ + ∥a − β∥ > δ,

we have h ̸∈ A+ δB and so a+ δB ̸⊂ A+ δB, which contradicts the
assumption that a + δB ⊆ A + δB. This completes the proof. □

Theorem 3.1. Let λ0 ∈ Λ and A be a nonempty compact convex
subset of a reflexive Banach space X. Assume that T (·, λ0) is rotund
and T (·, ·) is continuous on A × {λ0} with nonempty closed convex
values. Then S (·) is l.s.c. at λ0.

Proof. Suppose on the contrary that S (·) is not l.s.c. at λ0. Then
there exist a point x0 ∈ S (λ0), a neighborhood W0 of 0 ∈ X and a
sequence {λn} with λn → λ0 such that

(x0 + W0) ∩ S (λn) = ∅, ∀n ∈ N. (4)

There are two cases to be considered.
Case 1. S (λ0) is a singleton. For xn ∈ S (λn), one has

xn ∈ T (xn, λn) , ∀n ∈ N. (5)

Since xn ∈ A and A is compact, without loss of generality, we can
assume that xn → x̄ ∈ A. Noting that T (·, ·) is u.s.c. at (x̄, λ0),
it follows from Lemma 2.2 and (5) that there exist a point x′

∈

T (x̄, λ0) and a subsequence
{
xnk

}
of {xn} such that xnk → x′. By

xn → x̄, we know that x̄ = x′ and so x̄ = x′
∈ T (x̄, λ0). This means

that x̄ ∈ S (λ0). Noting that S (λ0) is a singleton, we have x̄ = x0
and so xn → x̄ = x0. Thus, xn ∈ x0 + W0 for n large enough. This
together with xn ∈ S (λn) implies that (x0 + W0) ∩ S (λn) ̸= ∅ for
n large enough, which contradicts (4).

Case 2. S (λ0) is not a singleton. Then there exists x∗
∈

S (λ0) such that x∗
̸= x0. Since x∗, x0 ∈ S (λ0), we know that

x∗
∈ T (x∗, λ0) and x0 ∈ T (x0, λ0). Thus, (x∗, x∗) , (x0, x0) ∈

Graph (T (·, λ0)). Let

x (t) = tx∗
+ (1 − t) x0, ∀t ∈ [0, 1].

Then it is clear that x (t) ∈ A. Since Graph (T (·, λ0)) is rotund, we
can find t0 ∈ (0, 1) such that

x (t0) ∈ x0 + W0 (6)

and

(x (t0) , x (t0)) ∈ int (Graph (T (·, λ0))) . (7)

It follows from (7) that there exists a constant δ > 0 such that

(x (t0) , x (t0)) + δB × δB ∈ Graph (T (·, λ0)) ,

where B is the closed unit ball in X . This shows that

x (t0) + δB ⊆ T (x (t0) , λ0) . (8)
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