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a b s t r a c t

Linear programming (LP) formulations are often employed to solve stationary, infinite-horizon Markov
decision process (MDP)models.We present an LP approach to solving non-stationary, finite-horizonMDP
models that can potentially overcome the computational challenges of standardMDP solution procedures.
Specifically, we establish the existence of an LP formulation for risk-neutralMDPmodelswhose states and
transition probabilities are temporally heterogeneous. This formulation can be recast as an approximate
linear programming formulation with significantly fewer decision variables.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that stationaryMarkov decision process (MDP)
models can be reformulated as linear programs and solved effi-
ciently using linear programming (LP) algorithms [2,17–19]. The
appeal of the LP formulation stems from the fact that it allows
for the inclusion of additional model constraints and facilitates
sensitivity analysis in sequential decision making problems. Fur-
thermore, duality theory allows one to characterize the optimal
decisions in aMDPmodel via the optimal solution of the associated
dual problem [18,19]. Owing to recent advances in the compu-
tational speed of LP solvers, the LP approach has been success-
fully employed to solve large-scale, stationary MDP models (see
[1,4,5,15,17,21]).

While the LP reformulation has been most prevalent in the
case of stationary, infinite-horizonMDPmodels [6,18], by contrast,
this formulation is seldom used as a solution strategy for non-
stationary, finite-horizon MDP models. This is due to the ease
of implementation of the backward dynamic programming (BDP)
procedure to solve finite-horizon problems as a sequence of sim-
pler single-stage problems using the optimality equations. It iswell
known that, for an N-stage MDPmodel with K states and L actions
in each stage, the BDP procedure requires (N−1)LK 2 multiplicative
operations to determine an optimal policy [18]. The BDP procedure
is computationally viable for models with low-dimensional state
and action spaces, as the number of such operations is relatively
small. However, formodelswithmultidimensional state and action
spaces, BDP becomes computationally intractable due to the curses
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of dimensionality [2,17]. The problem is further exacerbated for
models with a large number of decision stages. For example, solv-
ing a 10-stagemodel comprised of four state and three action vari-
ables, each with five feasible values in each stage, requires more
than 2.2 × 109 multiplicative operations, which is prohibitively
large. The computational burden may increase further for non-
stationaryMDPmodels that include temporal heterogeneity in the
states and transition probabilities.

In this paper, we present a linear programming formulation for
non-stationary, finite-horizonMDPmodels as a viable approach to
overcome these computational challenges. Specifically, we prove
the existence of a general LP formulation for such models with
countable state and action spaces under a risk-neutral objective.
We establish lower and upper bounds of the value functions,which
are used to formulate the primal LP model. The solution of this
model is the value function of the MDP model, while the solution
of its dual problem recovers the optimal policy. Although the LP
approach does not (in and of itself) overcome the curses of dimen-
sionality, it lays the groundwork for implementing approximate
linear programming (ALP) procedures [4] to solve computationally
intractable finite-horizon models. Specifically, we suggest an ALP
formulation that utilizes parametric basis functions to approxi-
mate the value functions at each stage. In light of recent advances
in LP solvers, the ALP approach offers computational advantages
over traditional MDP solution procedures (such as the value and
policy iteration algorithms) for solving high-dimensional finite-
horizon problems.

The remainder of the paper is organized as follows. Section 2 in-
troduces some preliminaries of the non-stationary, finite-horizon
MDP model, while Section 3 presents our main results which es-
tablish existence of the LP formulation. In Section 4, we discuss the
computational advantages of using the LP approach as compared to
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standard MDP solution procedures. Some concluding remarks are
provided in Section 5.

2. Preliminaries

Consider a finite planning horizon T = {1, 2, . . . ,N} with N
decision stages (or decision epochs) and let t ∈ T be the index
of the tth decision epoch. For convenience, define T ′

≡ T \ {N}.
In what follows, all random variables are defined on a common,
complete probability space (Ω, A ,P), where Ω is a sample space,
A is a σ -field of subsets of Ω and P is a probability measure on
(Ω, A ). In what follows, all vectors are assumed to be column
vectors, unless otherwise noted. The state of the process at the start
of stage t is denoted by the random vector St whose state space is a
countable set St ⊂ Rn. A realization of St is denoted by s ∈ St .
When the state of the process is s, the set of feasible decisions
(or action space) is denoted by a countable set Xt (s) ⊂ Rm. For
notational convenience, we suppress the dependence of this set on
s and simply write Xt . A decision rule is a vector-valued mapping
xt : St → Xt that prescribes feasible actions for each s ∈ St . A set
of decision rules, one for each stage t ∈ T ′, is called a policy and is
denoted by π = {xt : t ∈ T ′

} ∈ Π , where Π is the collection of
all feasible Markov deterministic (MD) policies. It is noted that no
decisions aremade in the terminal stage t = N . For a given decision
rule xt−1, the temporally-heterogeneous transition probabilities
are denoted by Pt (s′

|s, xt−1(s)), where (s′, s) ∈ St × St−1 and
xt−1(s) ∈ Xt−1. Let p : S1 → [0, 1] be the probabilitymass function
of the initial state S1 such that 0 ≤ p(s) ≤ 1 for all s ∈ S1 and∑

s∈S1
p(s) = 1. For a given policy π , the transition probability

matrix at stage t , denoted by Q π
t , is defined as

Q π
t =

(
Pt (s′

|s, xt−1(s)) : (s′, s) ∈ St × St−1, xt−1 ∈ π
)
,

t = 2, . . . ,N,

where
∑

s′∈St
Pt (s′

|s, xt−1(s)) = 1 for all s ∈ St−1. The random
one-step cost incurred in stage t ∈ T ′ is denoted by ct (St , xt (St )),
while the terminal cost is cN (SN ). For a given policy π , the vector of
one-step costs at stage t is

cπ
t =

{
(ct (s, xt (s)) : s ∈ St , xt ∈ π ), t ∈ T ′,

(cN (s) : s ∈ SN ), t = N,

where we assume that |ct (s, xt (s))| < ∞ and |cN (s)| < ∞.
Consider a mapping Vπ

t : St → R, where Vπ
t (s) denotes the

expected future cost incurred under policy π starting in state s at
stage t , and let V π

t ≡ (Vπ
t (s) : s ∈ St ). By definition,

V π
t = cπ

t + δQ π
t+1V

π
t+1, t ∈ T ′,

V π
N = cN ,

where δ ∈ (0, 1] is a discount factor. Given an initial state s, the
risk-neutral objective is tominimize the expected total discounted
costs incurred over the planning horizon as follows:

z∗(s) = inf
π∈Π

{
V π
1 (s)

}
= inf

π∈Π

⎧⎨⎩Eπ

⎛⎝∑
t∈T ′

δt−1ct (St , xt (St )) + δN−1cN (SN )

⏐⏐⏐⏐⏐⏐ S1 = s

⎞⎠⎫⎬⎭ . (1)

We denote an optimal policy of (1) by π∗ and the corresponding
value function at stage t by V ∗

t ≡ Vπ∗

t . Let V ∗
t = (V ∗

t (st ) : st ∈ St )
be the vector of optimal values in stage t . Then, the optimality
equations (in vector form) are given by

V ∗

t = inf
π∈Π

{
cπ
t + δQ π

t+1V
∗

t+1

}
, t ∈ T ′, (2a)

V ∗

N = cN . (2b)

3. Linear programming formulation
In this section, we establish the existence of an LP formulation

for the model in (1) whose optimal solutions are the value func-
tions defined in (2). Additionally, we present an associated dual
LP formulation whose optimal solutions can be used to obtain an
optimal policy π∗.

LetV denote the set of all real-valued, bounded functions on St .
For each t ∈ T , consider a complete, normed linear space (V, ∥·∥∞)
of bounded functions on St that is equipped with the supremum
norm ∥ · ∥∞ and component-wise partial order ⪯. Let Jt : St → R
be a function that belongs to V, and let Jt = (Jt (s) : s ∈ St )
be the vector form of Jt so that its supremum norm is ∥Jt∥∞ =

sups∈St {|Jt (s)|}. Moreover, for any two functions J1t , J
2
t ∈ V, the

relation J1t ⪯ J2t implies that J1t (s) ≤ J2t (s) for all s ∈ St , or
simply that J1t ≤ J2t . For each t ∈ T ′, define a nonlinear operator
Λt : V → V, such that for any Jt+1 ∈ V,

Λt Jt+1 = inf
π∈Π

{
cπ
t + δQ π

t+1Jt+1
}
. (3)

For stage N , define another operator, Ψ : V → V, such that for all
JN ∈ V,

Ψ JN = cN . (4)

Thus, the operator Ψ maps any bounded function in stage N to the
terminal cost function in stage N so that Ψ JN (s) = cN (s) for each
s ∈ SN . Next, denote an arbitrary vector of functions, one for each
stage t ∈ T , by J = (Jt : t ∈ T ) ∈ VN and define the operator
Λ : VN

→ VN such that for any J ∈ VN ,

ΛJ = (Λ1J2, Λ2J3, . . . , ΛN−1JN , Ψ JN) . (5)

A fixed point of the operator Λ is any vector J∗
∈ VN satisfying the

equality

ΛJ∗
= J∗. (6)

Any J ∈ VN that satisfies the inequality J ≤ ΛJ is called
a sub-solution of (6), while a super-solution of (6) satisfies J ≥

ΛJ . Proposition 1 shows that sub- and super-solutions of (6) are,
respectively, lower and upper bounds of the value function vector
V ∗

= (V ∗
t : t ∈ T ).

Proposition 1. For any J ∈ VN , if J ≤ ΛJ (J ≥ ΛJ ), then J ≤ V ∗

(J ≥ V ∗).

Proof. Let π̄ be a feasible policy of (1). First consider the case
J ≤ ΛJ for some J ∈ VN . In this case, Jt ≤ Λt Jt+1, for each t ∈ T ′

and JN ≤ Ψ JN = cN . Using equalities (3) and (4), respectively, we
obtain the following system of inequalities:

Jt ≤ inf
π∈Π

{cπ
t + δQ π

t+1Jt+1} ≤ c π̄
t + δQ π̄

t+1Jt+1, t ∈ T ′, (7a)

JN ≤ cN = V ∗

N . (7b)

The right-most inequality in (7a) holds because π̄ is feasible, but
not necessarily optimal, for Jt+1 in (3). Starting in stage 1 and
sequentially applying constraints (7) for stages t = 2, . . . ,N , we
have

J1 ≤ c π̄
1 + δQ π̄

2 J2,
≤ c π̄

1 + δQ π̄
2 (c π̄

2 + δQ π̄
3 J3) = c π̄

1 + δQ π̄
2 c π̄

2 + δ2Q π̄
2 Q π̄

3 J3,
...

≤ c π̄
1 + δQ π̄

2 c π̄
2 + · · · + δN−1

(∏
t∈T ′

Q π̄
t+1

)
cN

= J π̄
1 ,
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