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a b s t r a c t

We consider the well-known augmented Lagrangian method for constrained optimization and compare
its classical variant to a modified counterpart which uses safeguarded multiplier estimates. In particular,
we give a brief overview of the theoretical properties of both methods, focusing on both feasibility and
optimality of limit points. Finally, we give an example which illustrates the advantage of the modified
method and incidentally shows that someof the assumptions used for convergence of the classicalmethod
cannot be relaxed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this report is to compare two variants of the
well-known augmented Lagrangian method (ALM), also known as
the multiplier-penalty method or simply method of multipliers.
Methods of this type essentially come in two flavours. On the
one hand, there is the ‘‘classical’’ ALM [4,9,13,16] which goes back
to [10,15]. On the other hand, modified ALMs [1,2,6–8] which seek
to alleviate some of the weaknesses of the classical methods have
surfaced in recent years. These methods go back to [1,5]; note
that a similar method was used in [14] for the analysis of quasi-
variational inequalities.

On the following pages, we give an overview of the two meth-
ods, and refer to them as the standard ALM and modified ALM,
respectively.We also give convergence theorems for bothmethods
(some of these are just taken from the literature). The ultimate
purpose of this report is to give a fairly simple example which
demonstrates the benefits of the modified ALM when compared
to its classical counterpart.

For a better comparison, we have attempted to put the algo-
rithms into a unified framework. For our purposes, this is a finite di-
mensional optimization problemwith inequality constraints.More
precisely, let f : Rn

→ R, g : Rn
→ Rm be given functions, and
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consider the problem defined by

min f (x) s.t. g(x) ≤ 0. (1)

It is possible to make this framework more general, for instance,
by including equality constraints, additional constraint functions
which are not penalized, or even considering infinite-dimensional
problems. Moreover, augmented Lagrangian methods have also
been extended to problem classes which are inherently more
complex, such as generalized Nash equilibrium problems [12] and
quasi-variational inequalities [11]. However, for our comparison of
the two ALMs, we have decided to remain within the framework
(1) because it is fairly simple and suffices for a discussion of the
algorithmic differences of the two methods. Moreover, one might
argue that optimization problems are both the historical origin and
the key application of augmented Lagrangian methods. Hence, it
makes sense to discuss the applicability and performance of such
methods for precisely this problem class.

It is important to note that convergence theorems and prop-
erties of ALMs usually come in multiple flavours as well. These
occur naturally because ALMs generate a sequence of penalized
subproblems, and one has to clarify in which manner these are
solved. The two most prominent choices in this regard are global
minimization and finding stationary points. Here, we focus on the
latter for its practical relevance and because global minimization
is infeasible if the underlying problem is non-convex.

This report is organized as follows. In Section 2, we start with
some preliminary definitions. Sections 2.1 and 2.2 are dedicated
to the standard and modified ALMs, respectively, and we give (or
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recall) convergence theorems for each of thesemethods. In Section
3 and its subsections, we give an example and discuss the results
of the standard and modified ALMs, both from a theoretical and
practical point of view. We conclude with some final remarks in
Section 4.

Notation: The gradient of the continuously differentiable ob-
jective function f is denoted by ∇f , whereas the symbol ∇g(x)
stands for the transposed Jacobian of the constraint function g at
a given point x. For a mapping of two block variables, say L(x, λ),
we write ∇xL(x, λ) to indicate the derivative with respect to the x-
variables only. Given any vector z, we use the abbreviation z+ for
max{0, z}, where the maximum is taken component-wise. Finally,
throughout this note, ∥z∥ denotes the Euclidean norm of a vector
z of appropriate dimension.

2. Preliminaries

Recall that we are dealing with the optimization problem (1).
Since we are ultimately interested in KKT-type conditions, we
assume that f , g are continuously differentiable on Rn. Moreover,
for ρ > 0, λ ≥ 0, we define the augmented Lagrangian

Lρ(x, λ) = f (x)+
ρ

2

(
g(x)+

λ

ρ

)
+

2

. (2)

It is easily seen that, like f and g , the function Lρ is continuously
differentiable on Rn. Its gradient is given by

∇xLρ(x, λ) = ∇f (x)+∇g(x)(λ+ ρg(x))+, (3)

which is in fact the main motivation for the classical Hestenes–
Powell multiplier updating scheme.

For our analysis, we will need certain constraint qualifications.
The linear independence and Mangasarian–Fromovitz constraint
qualifications (LICQ and MFCQ, respectively) are fairly standard
and, hence, we do not give their definitions here. Instead, we
focus on two other conditions: the extended MFCQ (EMFCQ) and
the constant positive linear dependence condition (CPLD), whose
definitions are given below. Note thatwe call a collection of vectors
v1, . . . , vk positively linearly dependent if the system λ1v1 + · · · +

λkvk = 0, λ ≥ 0, has a nontrivial solution. Otherwise, the vectors
are called positively linearly independent.

Definition 2.1. Let x̄ ∈ Rn be a given point. We say that

(a) EMFCQ holds in x̄ if the set of gradients ∇gi(x̄) with gi(x̄) ≥ 0
is positively linearly independent.

(b) CPLD holds in x̄ if, for every I ⊆ {i | gi(x̄) = 0} such that the
vectors∇gi(x̄) (i ∈ I) are positively linearly dependent, there
is a neighbourhood of x̄where the gradients∇gi(x) (i ∈ I) are
linearly dependent.

It iswell-known and easy to verify that EMFCQboils down toMFCQ
for feasible points, and that CPLD is weaker than MFCQ. Moreover,
using a standard theorem of the alternative, EMFCQ is equivalent
to the existence of a d ∈ Rn such that

gi(x̄) ≥ 0 H⇒ ∇gi(x̄)Td < 0 (4)

for all i ∈ {1, . . . ,m}.
Note that some subsequent results may hold under weaker

assumptions than CPLD or EMFCQ. For instance, there are certain
relaxed versions of CPLD [3] which can be used in a similar manner
as CPLD. However, for the sake of simplicity, we have decided to
remainwith the conditions above. Note also that at least one of the
aforementioned relaxations of CPLD is in fact equivalent to CPLD
for our setting.

2.1. The standard method

Here, we give a fairly straightforward version of the standard
ALM. Recall that Lρ is the augmented Lagrangian from (2) and that
the optimization problem has inequality constraints only.

Algorithm 2.2 (Standard ALM).

(S.0) Let (x0, λ0) ∈ Rn+m, ρ0 > 0, γ > 1, τ ∈ (0, 1), and set k := 0.
(S.1) If (xk, λk) is a KKT point of the problem: STOP.
(S.2) Compute an approximate solution xk+1 of the problem

min Lρk (x, λ
k). (5)

(S.3) Set λk+1
:=

(
λk
+ ρkg(xk+1)

)
+
and

V k+1
=

min
{
−g(xk+1),

λk

ρk

} . (6)

If k = 0 or V k+1
≤ τV k, set ρk+1 := ρk. Otherwise, set

ρk+1 := γ ρk.
(S.4) Set k← k+ 1 and go to (S.1).

The test function in (6) arises from an inherent slack variable trans-
formation which is often used to define the augmented Lagrangian
method for inequality constrained problems. Note also that, for
formal reasons, we have given the case k = 0 specific treatment
in Step 3 since (6) only defines V k for k ≥ 1 and V 0 is undefined.

Note thatwe have left the term ‘‘approximate solution’’ unspec-
ified in Step 2. As mentioned in the introduction, multiple choices
can be made for the solution process of the subproblems, e.g. one
could look for globalminima or stationary points. In this report, we
will only consider the latter case. More precisely, we assume that
L′ρk (x

k+1, λk)→ 0. Using (3), it is easy to see that

∇xLρk (x
k+1, λk) = ∇f (xk+1)+∇g(xk+1)λk+1. (7)

We now turn to two convergence theorems for the standard ALM.
Note that we implicitly assume that the method generates an
infinite sequence (xk). More convergence results using stronger
assumptions can be found in [4,9].

Theorem 2.3. Let (xk) be generated by Algorithm 2.2, and assume
that

xk+1 → x̄ and ∇xLρk (x
k+1, λk)→ 0. (8)

If x̄ is feasible and CPLD holds in x̄, then x̄ is a KKT point of the problem.

Proof. The result essentially follows by applying [7, Thm. 3.6]. To
this end, we need to verify that min{−g(xk+1), λk+1

} → 0. This is
obvious whenever (ρk) stays bounded, cf. (6). Hence consider the
case where ρk →∞, and recall that g(x̄) ≤ 0. If i is an index with
gi(x̄) < 0, then the multiplier updating scheme implies λk+1

i = 0
for all sufficiently large k. This completes the proof. □

The above theorem does not contain any information about the
attainment of feasibility. Since the augmented Lagrangian method
is, at its heart, a penalty method, the achievement of feasibility is
paramount to the success of the algorithm. The following result
contains some information in this direction.

Theorem 2.4. If (8) holds and x̄ satisfies EMFCQ, then x̄ is feasible
and CPLD holds in x̄. In particular, the requirements of Theorem 2.3
are satisfied.

Proof. Note that, for feasible points, EMFCQ implies CPLD. If (ρk)
is bounded, then V k+1

→ 0 and x̄ is feasible. Now, let ρk → ∞.
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