
Operations Research Letters 45 (2017) 604–609

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A PTAS for a resource scheduling problem with arbitrary number of
parallel machines
Péter Györgyi *
Department of Operations Research, Loránd Eötvös University, H1117 Budapest, Pázmány Péter sétány 1/C, Hungary
Institute for Computer Science and Control, H1111 Budapest, Kende str. 13–17, Hungary

a r t i c l e i n f o

Article history:
Received 22 June 2016
Received in revised form 19 September
2017
Accepted 21 September 2017
Available online 4 October 2017

Keywords:
Parallel machine scheduling
Non-renewable resource
Approximation scheme

a b s t r a c t

In this paper we study a parallel machine scheduling problem with non-renewable resource constraints.
That is, besides the jobs and machines, there is a common non-renewable resource consumed by the
jobs, which has an initial stock and some additional supplies over time. Unlike in most previous results,
the number of machines is part of the input. We describe a polynomial time approximation scheme for
minimizing the makespan.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study a parallel machine scheduling problem
and describe a polynomial time approximation scheme (PTAS) for
it. In our problem, the jobs have an additional resource require-
ment: there is a non-renewable resource (like raw material, en-
ergy, or money) consumed by the jobs. The resource has an initial
stock, which is replenished at some a-priori known moments of
time. As usual, each job can be scheduled on any machine, the
job processing times do not depend on the machines assigned,
machines can perform only one job at a time, and preemption of
jobs is not allowed. The objective is to minimize the maximal job-
completion time, or, in other words, themakespan of the schedule.

More formally, there are m parallel machines, M =

{M1, . . . ,Mm}, a finite set of n jobs J = {J1, . . . , Jn}, and a common
resource consumed by some, or possibly all of the jobs. Each job
Jj has a processing time pj ∈ Z+ and a resource requirement
aj ∈ Z≥0 from the common resource, noting that aj = 0 is
possible. The resource is supplied in q different time moments,
0 = u1 < u2 < · · · < uq; the number b̃ℓ ∈ Z+ represents the
quantity supplied at uℓ, ℓ = 1, 2, . . . , q. A schedule σ specifies
a machine and the starting time Sj for each job, and it is feasible
if (i) on every machine the jobs do not overlap in time, and if
(ii) at any time point t the total material supply from the resource
is at least the total request of those jobs starting not later than t ,

* Correspondence to: Department of Operations Research, Loránd Eötvös Univer-
sity, H1117 Budapest, Pázmány Péter sétány 1/C, Hungary.

E-mail address: gyorgyi.peter@sztaki.mta.hu.

i.e.,
∑

(ℓ : uℓ≤t)b̃ℓ ≥
∑

(j : Sj≤t)aj. The objective is to minimize the
makespan, i.e., the completion time of the job finished last.

This problem is a sub-problem of a more general resource
scheduling problem: in the general case there are r resources, the
requirements aj and the supplies bℓ are r-dimensional vectors. We
denote our problem by P|rm = 1|Cmax, where rm = 1 indicates
that there is only one single non-renewable resource. Since the
makespan minimization problem with resource consuming jobs
on a single machine is NP-hard even if there are only two supply
dates [2], the studied problem is NP-hard.

The combination of scheduling and logistic, that is, considering
e.g., raw material supplies in the course of scheduling, has a great
practical potential, as this problem frequently occurs in real-world
applications (e.g. [1,4]).

1.1. Main result and structure of the paper

Section 2 summarizes the previous results, while Section 3 sim-
plifies the resource scheduling problem with some observations
and gives an integer programmingmodel of the problem. In Section
4, we prove the following:

Theorem 1. There is a PTAS for P|rm = 1|Cmax.

There are several approximation schemes for similar scheduling
problems with non-renewable resource constraints (see Section
2), however, to our best knowledge, this is the first time, that an
arbitrary number of parallel machine is considered in an approx-
imation algorithm for scheduling with non-renewable resources.
Note that the latter problem is already APX-hard in case of two

https://doi.org/10.1016/j.orl.2017.09.007
0167-6377/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.orl.2017.09.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.09.007&domain=pdf
mailto:gyorgyi.peter@sztaki.mta.hu
https://doi.org/10.1016/j.orl.2017.09.007

P. Györgyi / Operations Research Letters 45 (2017) 604–609 605

resources [11], so limiting the number of resources to one is nec-
essary to have a PTAS unless P = NP. The problem P|rm = 1|Cmax
was the only problemwith unknown approximability status in the
class P|rm|Cmax [11].

Our PTAS reuses ideas from known PTAS-es designed for P ∥

Cmax (e.g. [13,12]). Actually, we invoke a variant of the latter. How-
ever, there are no resource constraints in those PTAS-es, therefore
the jobs differ only in their processing times. Rounding techniques
are useful in a PTAS to simplify the instances (e.g. Lemmas 1 and
2), because they introduce only small errors, but rounding the
resource supplies or resource requirements does not seem a viable
approach. Instead, we will sort the jobs into different categories,
and use enumeration to find suboptimal schedules for the problem
with rounded processing times.

1.2. Terminology

An optimization problem Π consists of a set of instances, where
each instance has a set of feasible solutions, and each solution has
an (objective function) value. In a minimization problem a feasible
solution of minimum value is sought, while in a maximization
problem one of maximum value. An ε-approximation algorithm for
an optimization problem Π delivers in polynomial time for each
instance of Π a solution whose objective function value is at most
(1+ε) times the optimum value in case of minimization problems,
and at least (1 − ε) times the optimum in case of maximization
problems. For an optimization problem Π , a family of approxi-
mation algorithms {Aε}ε>0, where each Aε is an ε-approximation
algorithm for Π is called a Polynomial Time Approximation Scheme
(PTAS) for Π .

2. Previous work

Makespan minimization on parallel machines is one of the
oldest problem of scheduling theory. The problem is strongly
NP-hard [6], but there is a PTAS for it [13].

Scheduling problems with resource consuming jobs were in-
troduced by [2,3], and [15]. In [2], the computational complexity
of several variants with a single machine was established, while
in [3] activity networks requiring only non-renewable resources
were considered. In [15] a parallel machine problemwith preemp-
tive jobs was studied with a single non-renewable resource. This
resource had an initial stock and some additional supplies, like
in the model presented above, and it was assumed that the rate
of consuming the non-renewable resource was constant during
the execution of the jobs. These assumptions led to a polynomial
time algorithm for minimizing the makespan, which is in a strong
contrast to the NP-hardness of the scheduling problem analyzed
in this paper. Further results can be found in e.g., [16,17,7,5,8–
10,14,11].

In [8,9] and [10] there are several approximability results for
the single machine variant of the problem. [11] provided PTAS-es
for some parallel machine variant of the problem and showed that
the problemwith two resources and two supplies is APX-hard. See
also [11] for further previous results of the topic.

3. Preliminaries

Note that the following assumption holds without loss of gen-
erality and it has two easy corollaries:

Assumption 1.
∑q

ℓ=1b̃ℓ =
∑

j∈J aj.

Corollary 1. C∗
max > uq and we have enough resource for each job

that starts after uq.

Observation 1. For a PTAS, it is sufficient to provide a schedule
with a makespan of (1 + cε) times the optimum value, where c is a
constant i.e. it does not depend on the input. Hence, to reach a desired
performance ratio δ, we let ε := δ/c, and perform the computations
with the choice of ε.

The observation above shows the meaning of the next lemmas.

Lemma 1. With 1 + ε loss, we can assume that all processing times
are integer powers of 1 + ε(trivial).

Lemma 2 ([11]). In order to have a PTAS for P|rm|Cmax, it suffices
to provide a family of algorithms {Aε}ε>0 such that Aε is an ε-
approximation algorithm for the restricted problem where the supply
dates before uq are from the set {ℓεuq : ℓ = 0, 1, 2, . . . , ⌊1/ε⌋}.

We can model P|rm = 1|Cmax with a mathematical program
with integer variables in a way similar to that of [11]. We define
the values bℓ :=

∑
ν : uν≤uℓ

b̃ν , that is, bℓ equals the total amount
supplied from the resource up to uℓ and let T := {u1, u2, . . . , uq}.
We introduce q · |J | |M| binary decision variables xjℓk, (j ∈ J , ℓ =

1, . . . , q, k ∈ M) such that xjℓk = 1 if and only if job j is assigned
to machine k and to the time point uℓ, which means that the
requirements of job j must be satisfied by the resource supplies
up to time point uℓ. The mathematical program is

C∗

max =minmax
k∈M

max
uℓ∈T

⎛⎝uℓ +

∑
j∈J

q∑
ν=ℓ

pjxjνk

⎞⎠ (1)

s.t.∑
k∈M

∑
j∈J

ℓ∑
ν=1

ajxjνk ≤ bℓ, uℓ ∈ T (2)

∑
k∈M

q∑
ℓ=1

xjℓk = 1, j ∈ J (3)

xjℓk ∈ {0, 1}, j ∈ J , uℓ ∈ T , k ∈ M. (4)

The objective function expresses the completion time of the job
finished last using the observation that for everymachine there is a
time point fromwhich themachine processes the jobswithout idle
times. Constraints (2) ensure that the jobs assigned to time points
u1 through uℓ use only the resources supplied up to time uℓ. Eqs. (3)
ensure that all jobs are assigned to some machine and time point.
Any feasible job assignment x̄ gives rise to a set of schedules which
differ only in the ordering of jobs assigned to the same machine k,
and time point uℓ.

x̄ is a partial assignment, if it satisfies (4) and
∑

k∈M
∑q

ℓ=1xjℓk ≤

1, j ∈ J . If it satisfies also (2), then it is a feasible partial
assignment.

Subroutine Sch describes how we create a (partial) schedule
from a (partial) assignment.

Subroutine Sch [11]
Input: J̄ ⊆ J and x̄ such that for each j ∈ J̄ there exists a

unique (ℓ, k) with x̄jℓk = 1, and x̄jℓk = 0 otherwise.
Output: partial schedule Spart of the jobs in J̄ .

1. Spart is initially empty, then we schedule the jobs on each
machine in increasing uℓ order (first we schedule those jobs
assigned to u1, and then those assigned to u2, etc.):

2. When scheduling the next job with x̄jℓk = 1, then it is
scheduled at time max{uℓ, Clast (k)}, where Clast (k) is the
completion time of the last job scheduled on machine Mk,
or 0 if no job has been scheduled yet onMk.

Remark 1. Note that if x̄ is feasible partial assignment, then Spart
is a feasible partial schedule, since:

Download English Version:

https://daneshyari.com/en/article/5128341

Download Persian Version:

https://daneshyari.com/article/5128341

Daneshyari.com

https://daneshyari.com/en/article/5128341
https://daneshyari.com/article/5128341
https://daneshyari.com

