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a b s t r a c t

In this paper, we introduce the notion of ideal Nash equilibria in infinite-criteria games. Applying the
maximal element theorem, we provide an existence theorem of ideal Nash equilibria in infinite-criteria
games with discontinuous payoff functions. We further give a necessary and sufficient condition for the
existence of ideal Nash equilibria.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In noncooperative games, the payoff of a player reflecting the
desirability of an outcome to him is usually unidimensional. In
many practical problems, however, the players’ decisions are often
guided by multiple goals/criteria. Multicriteria game, in which a
player’s objective is represented by partial-ordered vectors, was
first introduced by Blackwell [4]. Some subsequent studies con-
cern the solution concepts of multicriteria games (cf. [4,7,13,23]).
The notion of Pareto-Nash equilibria proposed by Shapley and
Rigby [18] is the fundamental equilibrium concept in multicriteria
games as a generalization of Nash equilibrium in single-criterion
games [11]. Voorneveld et al. [22] introduced a new concept of
ideal Nash equilibria for finite-criteria games, which enables a
player to maximize all his criteria when the other players choose
their ideal Nash equilibrium strategies. Radjef and Fahem [14]
provided an existence theorem of ideal Nash equilibria with the
aid of a maximal element theorem due to [6].

The existing literature on this issue concerns mainly about
games with finite criteria and continuous payoffs. Games in
many important economic models, such as those in Bertrand [3],
Hotelling [8], Dasgupta and Maskin [5], and Jackson [9], have dis-
continuous payoffs. Studies on the theory of equilibrium existence
in single-criterion or finite-criteria games with discontinuous pay-
offs are abundant (cf. Dasgupta andMaskin [5]; Simon [19]; Simon
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and Zame [20]; Reny [15,16]; Tian [21]; Nessah and Tian [12]).
To our knowledge, discontinuous games with infinitely many cri-
teria have received relatively little attention in game-theoretic
literature. This kind of game is, however, important and can be
applied to a variety of significant practical problems. A represen-
tative agent in a multi-criteria game is usually viewed as a multi-
member organization, in which each criterion corresponds to the
goal of a member. In various environments, there are infinitely
many members in organizations, so the number of criteria may be
infinite.

Next,we illustrate themotivation of this paperwith an electoral
game. Two parties (i = 1, 2) compete for a set of voters [0, 1]
by choosing simultaneously their policy platforms Pi within the
interval [0, 1]. Each voter has a certain ‘‘bliss point’’ x ∈ [0, 1].
This could be regarded as his ideological position along a Left–Right
political system: anyone could be an ultra-liberal and be on the far
left of the spectrum or be very conservative and be on the right.
Voters are assumed to have single-peaked preferences. If party i
is elected and policy Pi is implemented, then voter x obtains a
payoff u(x, Pi) = A − (x − Pi)2, where A is a sufficiently large
number guaranteeing a positive payoff. Every voter casts his ballot
for the partywith a closer platform. The voter who feels indifferent
between two parties will abstain. We denote by Si(P1, P2) ≡ {x ∈

[0, 1] : |x − Pi| < |x − P−i|} the set of strict supporters of party
i. Only one party will eventually take the office. By majority rule,
party i will win the election if m(Si(P1, P2)) > m(S−i(P1, P2)) (m(·)
is the measure of a set); two parties win with even chances if
m(S1(P1, P2)) = m(S2(P1, P2)). Once a party wins the election, he
represents and aims at maximizing the interest of every voter (not
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merely his supporters), while the losing party does not care about
interest of any voter (not even his supporters). Therefore, party i
has the following payoff:

Vi(P1, P2)

=

{ (u(x, Pi))x∈[0,1] if m(Si(P1, P2)) > m(S−i(P1, P2))
1/2 × (u(x, Pi))x∈[0,1] if m(Si(P1, P2)) = m(S−i(P1, P2))

(0)x∈[0,1] if m(Si(P1, P2)) < m(S−i(P1, P2)).

It is obvious that both parties have infinitely many criteria, and the
payoff functions V1, V2 are discontinuous on [0, 1] × [0, 1]. To see
this, note that V1(P, P) = V2(P, P) = 1/2 × (u(x, P))x∈[0,1] if P <

1/2;V1(P, P+ϵ) = (0)x∈[0,1], V2(P, P+ϵ) = (u(x, P+ϵ))x∈[0,1] if ϵ ∈

(0, 1−2P). So V1 and V2 are both discontinuous at (P, P).We define
a partially ordered preference ≽i of a party i as follows: V≽iV ′ if
(V )k ≥ (V ′)k, ∀k ∈ [0, 1]; V≻iV ′ if (V )k ≥ (V ′)k, ∀k ∈ [0, 1] and
strict inequality holds for at least one k ∈ [0, 1], where (V )k de-
notes the kth entry of the infinite-dimensional payoff vector V . Un-
der ≽i, i = 1, 2, we find that the unique Nash equilibrium is P1 =

P2 = 1/2. Suppose it is not the case. We assume, without loss of
generality, that P1 < P2. If P1+P2 = 1, then the election is tied, both
parties will deviate and choose a policy a bit closer to 1/2. To see
this, note that V1(P1 + ϵ, P2) = (u(x, P1 + ϵ))x∈[0,1]≻1V1(P1, P2) =

1/2× (u(x, P1))x∈[0,1] and V2(P1, P2 −ϵ)≻2V2(P1, P2) for some small
ϵ > 0. If P1 + P2 ̸= 1, we have a non-tied outcome, then the
loser will obviously deviate. Therefore, we must have P1 = P2 in
the equilibrium. Next, we proceed to show that P1 = P2 = 1/2.
Suppose that P1 = P2 ̸= 1/2, then any party has incentive to
move slightly toward 1/2. He will defeat his rival and will improve
the interests of all voters by doing so. Summarizing, we have the
unique Nash equilibrium P1 = P2 = 1/2. Note that in our model,
a party aims at maximizing the infinite-dimensional payoff vector
of all voters rather than cares only about winning the election.
But the Median Voter Theorem (MVT) still applies. However, it is
worth noting that the applicability of MVT in this setup crucially
depends on the utility function adopted. If we use other form, say
u(x, Pi) = 1/|x − Pi|, then any (P1, P2) ∈ {(x, y) ∈ [0, 1]2|x +

y = 1} forms a Nash equilibrium, since for every party, any
unilateral deviationwill not be a Pareto improvement for all voters.
However, the existing game-theoretic literature still lacks a general
methodology for studying the existence of equilibria in this kind
of games. In this paper, we fill this gap by providing the existence
theorem of ideal Nash equilibria in noncooperative games with
pseudocontinuous payoff functions and infinite criteria.

The remainder of the paper is organized as follows. In Section 2,
we give some preliminary definitions; Section 3 gives the main
results.

2. Preliminaries and definitions

A game with infinite criteria is a list τ = ⟨I, Xi, Y , fi,Gi⟩, where
I = {1, . . . , n} is the set of players; Xi is the set of actions for
player i, X =

∏
i∈IXi, X−i =

∏
j̸=iXj, Y is the set of criteria;

Gi : X ⇒ Y is the feasible-criterion mapping of player i; for each
y ∈ Y , fi(y, ·) : X → R is the payoff function of player iwith respect
to the criterion y.

Definition 2.1. A strategy profile x∗
∈ X is

• a weakly efficient Nash equilibrium of τ if for each i ∈ I and
each zi ∈ Xi, there exists y ∈ Gi(x∗) such that

fi(y, zi, x∗

−i) ≤ fi(y, x∗);

• an efficient Nash equilibrium of τ if for each i ∈ I and each
zi ∈ Xi, there exists y ∈ Gi(x∗) such that

fi(y, zi, x∗

−i) < fi(y, x∗);

• an ideal Nash equilibrium of τ if for each i ∈ I and each
zi ∈ Xi,

fi(y, zi, x∗

−i) ≤ fi(y, x∗), ∀y ∈ Gi(x∗).

Remark 2.1. (1) If Gi(x) = {1, . . . , r(i)} for all x ∈ X and for
each i ∈ I , our ideal Nash equilibria, efficient Nash equilibria
and weakly efficient Nash equilibria coincide with the concepts of
Definitions 3 and 4 in [14]. (2) If Y is a singleton set, then an ideal
Nash equilibrium is a classical Nash equilibrium, while an efficient
Nash equilibrium is a strict Nash equilibrium.

We next recall a weaker concept of continuity, introduced
in [10].

Definition 2.2. Let X be a topological space. A function f : X →

R is
(i) upper pseudocontinuous at z0 ∈ X if for all z ∈ X such that

f (z0) < f (z), we have lim supy→z0 f (y) < f (z);
(ii) upper pseudocontinuous on X if it is upper pseudocontinu-

ous at all z ∈ X;
(iii) lower pseudocontinuous at z0 ∈ X if −f is upper pseudo-

continuous at z0 ∈ X;
(iv) lower pseudocontinuous on X if it is lower pseudocontinu-

ous at all z ∈ X;
(v) pseudocontinuous on X if it is upper and lower pseudocon-

tinuous on X .

Remark 2.2. The concept of upper (resp. lower) pseudocontinuity
is strictly weaker than upper (resp. lower) semicontinuity. The
converse is false. See the following example.

Example 2.1. Let f : [0, 2] → R be defined by

f (x) =

{
x x ∈ [0, 1]
x + 1 x ∈ (1, 2].

It is easy to verify that f is not upper semicontinuous at x0 = 1, but
upper pseudocontinuous. Moreover, f (2) = maxx∈[0,2]f (x).

Remark 2.3. Every upper pseudocontinuous function guarantees
the existence of maximum points on a compact set. Appendix
illustrates this result.

Lemma 2.1 ([17]). Let X be a Hausdorff topological space. A real-
valued function f : X → R is pseudocontinuous on X if and only if
when f (x) < f (z), there exist an open neighborhood Nx of x and an
open neighborhood Nz of z such that f (x′) < f (z ′) for all x′

∈ Nx and
for all z ′

∈ Nz .

We next give an extension of P-quasi-concave-like functions
in [2].

Definition 2.3. LetX, Y be topological vector spaces,D a nonempty
convex subset of X and G : X ⇒ Y be a set-valued mapping.
A function f : Y × X → R is quasi-concave-like with respect to
the mapping G if for each x1, x2 ∈ D, x ∈ X and t ∈ [0, 1], we have
f (y, tx1 + (1− t)x2) ≥ f (y, x1), ∀y ∈ G(x) or f (y, tx1 + (1− t)x2) ≥

f (y, x2), ∀y ∈ G(x).

Remark 2.4. If G(x) = {1, . . . , k} for all x ∈ X , the quasi-
concave-like function with respect to G is equivalent to the
Rk

+
-quasi-concave-like function.

We recall the maximal element theorem due to [6].

Theorem 2.1 ([6]). Let I be any index set. Suppose that the following
conditions are satisfied: for each i ∈ I ,
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