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a b s t r a c t

In an infinite horizon inventory and sales model, we show that the seller’s unique strategy exhibits
increasing prices under general conditions on the revenue function. An increasing discount rate leads
to an increase of the time interval between order times, but an increase in batch size has an ambiguous
effect.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A seller offers a single product to customers over infinite time,
and these customers buy the product according to a deterministic
demand function. The seller uses dynamic pricing to maximize
his time-discounted profits. The seller is a retailer who can only
acquire the good in large bulks, at a fixed cost for every new
batch. Our model considers inventory holding costs implicitly by
maximizing time-discounted profits, which captures the opportu-
nity cost of the capital when accounting for the inventory holding
cost. A typical example is an airline company which plans flight
schedules ahead over a certain stretch of time and typically offers
tickets at changing, usually increasing, prices.

For overviews of the literature on dynamic pricing in the pres-
ence of inventory considerations, see [2,9], and [7]. With only few
exceptions, mentioned below, this literature maximizes average
profits over a fixed time horizon and assumes that any quantity
can be ordered.

A strategy of the seller consists of a specification of order times
and sales prices at each point in time. Under concavity of the
revenue function, the seller’s optimal strategy turns out to be
stationary and unique. It is characterized by the time that elapses
between any two ordermoments and an optimal path of increasing
prices or, equivalently, increasing prices.
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In a comparative statics analysis, we show that the time be-
tween two order moments increases with batch cost, a result that
confirms intuition. In the case of linear demand, we show that
the time between two order moments also increases with the
discount rate, but it is not clear whether this is the case for more
general demand functions. As to the effect of batch size on the
time between order moments, intuition suggests a positive effect.
However, even for the casewith linear demand functions, we show
that it can be both positive and negative.

The works that are closest to our approach are on the one
hand [18] and on the other hand [8] and [12]. The first paper
considers the maximization of average profits over a fixed time
horizon rather than discounted profits over an infinite time hori-
zon. Another important difference with [18] is that we assume
the good is ordered in batches of a fixed size. In that respect
our approach is similar to [8] and [12], among the few papers in
the literature that also consider this case. Contrary to our model
of continuous price setting, these two papers consider the case
where prices are set at the beginning of each period. Other related
works, following the seminal contribution [14], are [17] and [10].
Extensions to multiple interacting players are considered in [15]
and [16]. This literature also maximizes discounted profits using
dynamic pricing, but deals with a fixed planning horizon and firms
which operate under a convex increasing production cost function
and choosing a production rate.

Further papers in the literature also assume deterministic de-
mand functions, but consider discrete time models. A notable
example is [13] which considers the case with multiple items and
demand functions exhibiting seasonality. In [4], the effects of costly
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price adjustment are analyzed, allowing for different costs for price
increases versus price decreases.

Still other papers have studied models where demand is
stochastic, see [5,6,11], and [3].

In Section 2, we introduce the model. Section 3 provides the
optimal sales strategy. Section 4.1 provides the general sensitivity
analysis with respect to the parameters of the model, and Sec-
tion 4.2 analyzes the case of linear demand. Section 5 concludes.

2. The model

A manufacturer delivers a non-perishable good in batches of
size S > 0 for a price K > 0. The price K is the total cost for the
seller. The seller’s inventory level can never become negative, that
is, backlogging is not allowed. He can choose when to order new
stock and how much he is willing to sell from the stock at every
moment in time. Newly ordered stock is delivered instantly. Time
is continuous and the time horizon is infinite.

Revenue streams and costs are discounted at a rate of r > 0.
We assume that r is also equal to his opportunity cost of capital
and therefore include inventory holding costs related to the oppor-
tunity cost of capital invested in inventories. Other holding costs
like the costs of decay and costs related to space and handling
of the product should be incorporated explicitly when deemed
important. This is a possible extension of the current model.

The non-negative quantity q(t) is the amount of the good the
seller decides to supply at time t . The resulting function q is
assumed to belong to Q , the set functions that are piecewise con-
tinuous on any finite interval of [0, ∞) and do not have removable
discontinuities.

The instantaneous revenue for selling a quantity is given by the
continuous function R on [0, ∞). We assume that R is positive on
an interval (0, A), is zero on {0} ∪ [A, ∞), is twice continuously
differentiable on [0, A), has a unique maximum at qm such that
0 < qm < A, and is strictly concave on [0, A]. Notice that the twice
differentiability of R at 0 implies that R′(0) is finite.

Let X(t) be the inventory level of the seller at time t ⩾ 0, and
let T0, T1, . . . with T0 = 0 be the order moments. Between order
moments, stock decreaseswith rate q(t), and at each ordermoment
it increases with S. A strategy is a tuple σ = (q, T1, . . .) such that
q ∈ Q , T1, . . . ∈ Rwith 0 < T1 < . . ., and such that X(t) ⩾ 0 for all
t ≥ 0. By S , we denote the set of all strategies. The seller therefore
faces the following optimal control problem.

max
(q,T1,...)∈S

∞∑
i=0

(∫ Ti+1

Ti

e−rtR(q(t))dt − e−rTiK
)

subject to

X(0) = S, Ẋ(t) = −q(t); for all i ⩾ 1, X(Ti) = lim
t↑Ti

X(t) + S.

(1)

Observe that X(t) has discontinuities at the points T1, T2, etc. At
these points, Ẋ(t) is interpreted as the right derivative.

We assume that the seller can make a positive profit on each
batch, that is, K is smaller than the maximum discounted revenue
that the seller can receive for selling a single batch of size S.

3. The optimal order path

We start with some useful observations. First, in an optimal
strategy the seller will never run out of stock, so X(t) > 0 for all
t ⩾ 0, since otherwise he could simply shift part of his strategy
to the moment where he first ran out of stock, and increase his
profits due to discounting, contradicting optimality. Second, in an
optimal strategy the seller will never order before he runs out of
stock, since in such a case he could increase profits by postponing
reordering until he runs out of stock, thereby decreasing costs,

again due to discounting. Third, in an optimal strategy we have
q(t) ⩽ qm for all t ⩾ 0, since otherwise decreasing the offered
quantity to qm both increases instantaneous profit and decreases
the cost of ordering new stock due to discounting – since sales
speed is reduced, reordering is postponed.

We summarize these observations in the following lemma.

Lemma 3.1. Let σ = (q, T1, . . .) ∈ S be an optimal strategy for
problem (1). Then, for all t ⩾ 0 and i ⩾ 1, we have X(t) > 0,
limt↑TiX(t) = 0, and q(t) ⩽ qm.

As a step towards solving (1), we first determine the optimal
strategy for selling a batch S in a fixed time interval [0, T ]. As in
Lemma 3.1, it is not hard to see that we may assume T ⩾ Tm

=

S/qm.
Let Q T be the set of non-negative piecewise continuous func-

tions without removable discontinuities with domain [0, T ]. The
optimal control problem to solve for the case without reordering
is

max
q∈Q T

∫ T

0
e−rtR(q(t))dt

subject to

X(0) = S, X(T ) = 0, Ẋ(t) = −q(t) for all t ∈ [0, T ].

(2)

Note that we can set X(T ) = 0 since we are considering the case
without reordering.

Problem (2) can be handled by Pontryagin’s maximum princi-
ple. See [1] for the (simple) derivation of the following proposition.

Proposition 3.2. (a) Problem (2) has a solution. If q∗
∈ Q T is such

a solution, then q∗ is continuous on [0, T ] and there is c∗ ⩾ 0 and
t∗ ∈ [Tm, T ] such that

R′(q∗(t)) = c∗ert for t ∈ [0, t∗], q∗(t) = 0 for t ∈ (t∗, T ], (3)

and∫ t∗

0
q∗(t)dt = S. (4)

(b) The triple (q∗, c∗, t∗) in (a) is uniquely determined by (3) and (4).

It can be seen from this proposition, in particular from part (b),
that, if (q∗, c∗, t∗) is the optimal solution for a given T and if either
t∗ < T , or t∗ = T and q∗(t∗) = 0, then (q∗, c∗, t∗) is also the
optimal solution for any T ′ with T ′ ⩾ t∗.

We now denote the optimal triple for T by (qT , cT , tT ). See [1]
for the (simple) proof of the following lemma.

Lemma 3.3. There is a T > 0 such that tT < T .

By Lemma 3.3 and the observation following Proposition 3.2,
there is a T̂ > Tm such that tT = T for all T ∈ [Tm, T̂ ] and tT = T̂
for all T ⩾ T̂ . In view of Lemma 3.1, we may therefore restrict
attention to T ∈ [Tm, T̂ ] as the time between two order moments
in problem (1).

Letw∗ denote themaximum discounted revenue that the seller
can receive for selling a single batch of size S. Clearly, the selling
time that the seller needs to achieve this maximum is at most
T̂ . On the other hand, it cannot be smaller than T̂ since then the
optimal solution of problem (2) for T = T̂ would not be unique,
contradicting Proposition 3.2. Thus, we have the following result.

Lemma 3.4. w∗
=
∫ T̂
0 e−rtR(qT̂ (t))dt.

Our assumption that the seller can make a positive profit on
each batch is therefore equivalent to K < w∗.

Wenow turn to the seller’s original problem (1).We first restrict
our analysis to so-called stationary strategies. A strategy σ =
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