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a b s t r a c t

In this paperwe consider interchangeability of theminimization operatorwithmonotone risk functionals.
In particularwe discuss the role of strictmonotonicity of the risk functionals.We also discuss implications
to solutions of dynamic programming equations of risk averse multistage stochastic programming
problems.
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1. Introduction

Interchangeability of the minimization and expectation opera-
tors is a basis for deriving dynamic programming equations inmul-
tistage stochastic programming. In a setting of functional spaces
such interchangeability principle is derived, e.g., in Rockafellar and
Wets [1, Theorem 14.60]. In a risk averse case interchangeabil-
ity of the minimization and risk functionals was considered in
[2, Theorem 7.1] and [3, Proposition 6.60]. We revisit the question
of interchangeability with an emphasis on the role of strict mono-
tonicity of considered risk functionals. Importance of such strict
monotonicity was already pointed in relation to time consistency
of optimal policies of risk averse stochastic programs in [3, Section
6.8.5] and [4]. We also discuss implications of strict monotonicity
to solutions of dynamic programming equations.

2. Interchangeability principle

Let (Ω,F) be a sample space, i.e.,F is a sigma algebra of subsets
ofΩ , X be an abstract set and f : X ×Ω → R ∪ {+∞}. Consider

F (ω) := inf
x∈X

f (x, ω). (2.1)

Let Z be a linear space of F-measurable functions Z : Ω → R. We
discuss the interchangeability principle for each of the following
cases.

E-mail address: ashapiro@isye.gatech.edu.

(ℵ1) The set Ω = {ω1, . . . , ωm} is finite, F is the sigma algebra
of all subsets of Ω and Z is the space of all functions Z :

Ω → R. In this case the space Z is m-dimensional and can
be identified with Rm.

(ℵ2) The sample space (Ω,F) is equipped with some probability
measure P and Z := Lp(Ω,F, P), p ∈ [1,∞]. Equipped
with the norm ∥Z∥ =

(∫
|Z |

pdP
)1/p for p ∈ [1,∞), and

∥Z∥ = ess sup|Z(ω)| for p = ∞, this becomes a Banach
space.

(ℵ3) The set Ω is a compact metric space, F is the Borel sigma
algebra of Ω , and Z := C(Ω) is the space of continuous
functions Z : Ω → R equipped with the sup-norm ∥Z∥ =

supω∈Ω |Z(ω)|.

Of course the above case (ℵ1), of finite setΩ , can be considered
as a particular case of setting (ℵ3), we write it separately since
in that case the analysis simplifies considerably. In case (ℵ2) an
element Z of the space Z is a class of p-integrable functions Z :

Ω → Rwhich coincide for all ω ∈ Ω accept on a set of P-measure
zero. As we shall discuss it later, the case (ℵ3) is relevant when
the uncertainty set of probability measures is defined by moment
constraints. By writing equalities like F (·) := infx∈X f (x, ·) we mean
that this equality holds for all ω ∈ Ω in cases (ℵ1) and (ℵ3), and it
holds for P-almost every (a.e.) ω ∈ Ω in case (ℵ2).

In the above cases (ℵ1)–(ℵ3) there is a naturally defined order
relation between Z, Z ′

∈ Z . We write Z ⪰ Z ′ if Z(ω) ≥ Z ′(ω) for
all ω ∈ Ω in cases (ℵ1) and (ℵ3), and Z(ω) ≥ Z ′(ω) for a.e. ω ∈ Ω

in case (ℵ2). Consider a functional R : Z → R. It is said that R
is monotone if Z, Z ′

∈ Z and Z ⪰ Z ′, then R(Z) ≥ R(Z ′). It is
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said that R is strictly monotone if R is monotone and Z ⪰ Z ′ and
Z ̸= Z ′ imply that R(Z) > R(Z ′). By saying that R is continuous
we mean that it is continuous with respect to the norm topology
of the space Z . Let X be the set of mappings χ : Ω → X such that
fχ ∈ Z , where fχ (·) := f (χ (·), ·). We also write R(f (χ (ω), ω) for
R(fχ ). Consider the following equation

R(F ) = inf
χ∈X

R(fχ ), (2.2)

and the implications

χ̄ (·) ∈ argmin
x∈X

f (x, ·) ⇒ χ̄ ∈ argmin
χ∈X

R(fχ ), (2.3)

χ̄ ∈ argmin
χ∈X

R(fχ ) ⇒ χ̄ (·) ∈ argmin
x∈X

f (x, ·). (2.4)

Proposition 2.1. Suppose that F ∈ Z and R is monotone. Then the
following holds. (i) Suppose that the minimum of f (x, ω) over x ∈ X
is attained for all ω ∈ Ω . Then (2.2) and (2.3) follow; the implication
(2.4) also follows if either the set argminχ∈XR(fχ ) is a singleton or
R is strictly monotone. (ii) Suppose that R(·) is continuous at F and
there exists a sequence χk ∈ X such that fχk converges to F . Then
(2.2) and (2.3) follow; the implication (2.4) also follows if R is strictly
monotone.

Proof. We have that fχ ⪰ F for any χ ∈ X . Hence bymonotonicity
of R it follows that R(fχ ) ≥ R(F ), and thus

inf
χ∈X

R(fχ ) ≥ R(F ).

Conversely, consider the setting of case (i), i.e., there exists

χ̄ (·) ∈ argmin
x∈X

f (x, ·). (2.5)

Then F = fχ̄ and since F ∈ Z it follows that χ̄ ∈ X , and hence

R(F ) = R(fχ̄ ) ≥ inf
χ∈X

R(fχ ).

Thus (2.2) and the implication (2.3) follow. As it was shown above
the minimizer χ̄ belongs to the set argminχ∈XR(fχ ). If this set is a
singleton, then the implication (2.4) follows.

Suppose now that R is strictly monotone. Let χ̂ ∈ argminχ∈X
R(fχ ). We have that R(F ) = R(fχ̂ ). Also fχ̂ ⪰ F and hence by
strict monotonicity of R it follows that fχ̂ = F , i.e., f (χ̂ (·), ·) =

infx∈X f (x, ·). This proves the implication (2.4). This completes the
proof of case (i).

Consider now case (ii). Let χk ∈ X be a sequence such that fχk
converges to F . It follows by continuity of R that

R(F ) = lim
k→∞

R(fχk ) ≥ inf
χ∈X

R(fχ ).

Hence (2.2) follows, and (2.3) follows as well. If moreover R is
strictly monotone, then the implication (2.4) follows by the same
arguments as in case (i). ■

Let us discuss assumptions of the above proposition. In the
setting of case (ℵ1) the function F belongs to the space Z if F (ω)
is finite valued, i.e., for every ω ∈ Ω it follows that infx∈X f (x, ω) >
−∞ and there is x̄ ∈ X such that f (x̄, ω) < ∞. Also in that case
the space Z is finite dimensional. Consequently if the functional
R : Z → R is convex, then it is continuous. Existence of the
corresponding sequence χk holds automatically.

In the setting of case (ℵ3) suppose that the set X is a compact
metric space and f (x, ω) is finite valued and continuous on X ×Ω .
Then F (ω) is finite valued and continuous, and hence F belongs to
the space C(Ω). Also in that case f (x, ω) attains its minimal value
for every ω ∈ Ω , and hence there is no need for the assumption
(ii).

In case (ℵ2) we need to verify that F (ω) is measurable and
p-integrable for p ∈ [1,∞), and essentially bounded for p = ∞.
Suppose that X = Rn. It is said that function f (x, ω) is random
lower semicontinuous if its epigraphical mapping is closed valued
and measurable, [1, Definition 14.28] (in some publications, in
particular in [1], such functions are called normal integrands). If
f (x, ω) is random lower semicontinuous, then F (ω) is measurable,
[1, Theorem 14.37]. The condition of p-integrability can be verified
by ad hoc methods. In particular this holds if F (ω) is essentially
bounded. Also if R : Z → R is convex and monotone, then it is
continuous in the norm topology of the space Z = Lp(Ω,F, P),
p ∈ [1,∞) (cf., [2, Proposition 3.1]).

Proposition 2.2. In the setting of case (ℵ2), suppose that X = Rn,
f (x, ω) is random lower semicontinuous, F ∈ Z and R : Z → R is
monotone and continuous at F . Then (2.2) and (2.3) hold. If moreover
R is strictly monotone, then (2.4) holds as well.

Proof. By the second part of Proposition 2.1 we only need to verify
existence of a sequence χk ∈ X such that fχk converges to F .
Consider ε > 0. By the definition (2.1) of function F , for a.e. ω ∈ Ω

there is χ̄ (ω) ∈ X such that f (χ̄ (ω), ω) < F (ω)+ε.Moreover χ̄ can
be chosen in such a way that f (χ̄ (·), ·) is measurable. Indeed, since
f (x, ω) is random lower semicontinuous and hence its epigraphical
mapping ω ↦→ epif (·, ω) ⊂ Rn

× R is closed valued and mea-
surable, it follows by the Castaing representation that there is a
countable family of measurable mappings (χ ν, αν) : Ω → Rn

×R,
ν ∈ N, such that for every ω ∈ Ω the set {(χ ν(ω), αν(ω))} is dense
in epif (·, ω), [1, Theorem 14.5]. Consider sets

Aν := {ω ∈ Ω : f (χ ν(ω), ω) < F (ω) + ε}.

It follows that the sets Aν are measurable and ∪ν∈NAν = Ω . Some
of these sets can be empty. Define χ̄ (ω) in the recursive way:
χ̄ (ω) := χ1(ω) forω ∈ A1, and χ̄ (ω) := χ ν(ω) forω ∈ Aν \(∪ν−1

ι=1 Aι)
for ν = 2, . . ..

Now let εk be a sequence of positive numbers converging to zero
and χk(ω) be measurable mappings such that

f (χk(ω), ω) < F (ω) + εk, ω ∈ Ω. (2.6)

By the definition of F (ω) we also have that f (χk(ω), ω) ≥ F (ω).
Since F ∈ Z and hence is p-integrable, it follows from (2.6) that
fχk is also p-integrable and hence fχk ∈ Z . It also follows from (2.6)
that fχk converges to F in the norm topology of Z . ■

As the following examples show the strict monotonicity condi-
tion is essential to ensure the implication (2.4).

Example 1. Consider the setting of case (ℵ1) and let R(Z) :=∑m
i=1piZ(ωi), where pi are nonnegative numbers such that∑m
i=1pi = 1. The functional R can be viewed as the expectation

operator R = E associated with probabilities pi ≥ 0. This
functional is monotone and continuous. Eq. (2.2) takes here the
form

E
[
inf
x∈X

f (x, ω)
]

= inf
χ∈X

E[f (χ (ω), ω)]. (2.7)

If all pi > 0, i = 1, . . . ,m, then R = E is strictly monotone and
both implications (2.3) and (2.4) follow.

Suppose now that one of the probabilities pi is zero, say p1 = 0.
In that case E[f (χ (ω), ω)] does not depend on χ (ω1) and hence
χ̄ (ω1) can be any element of the set X in the left hand side of
(2.4), provided that such minimizer χ̄ does exist. Hence there is
no guarantee that χ̄ (ω1) ∈ argminx∈X f (x, ω1) and the implication
(2.4) can be false. Of course here the probability of the event {ω1}

is zero, and the implication (2.4) becomes correct if the right hand
side of (2.4) is understood to hold w.p.1. In the setting of case (ℵ2)
the expectation operator is strictly monotone. □
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