
Operations Research Letters 45 (2017) 388–391

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A greedy algorithm for solving ordinary transportation problem with
capacity constraints
Fang Liu
Nanyang Technological University, Singapore

a r t i c l e i n f o

Article history:
Received 10 January 2017
Received in revised form 30 May 2017
Accepted 30 May 2017
Available online 15 June 2017

Keywords:
Transportation problem
Greedy algorithm
Duality
Supermodularity
Matroid

a b s t r a c t

Consider the ordinary transportation problem with the objective to minimize the cost of transporting a
single commodity from M warehouses to N demand locations. Each warehouse i has a finite capacity ki.
We convert the above problem into a dual problem and construct a greedy algorithm to solve it.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider ordinary transportation problem for a single commod-
ity with M warehouses and N demand locations. Denote M =

{1, . . . ,M} as the set of all warehouses and N = {1, . . . ,N} as
the set of all demand locations. At each warehouse i ∈ M the
maximum amount of product available is ki ≥ 0 and at each
demand location j ∈ N the demand is dj ≥ 0. The cost of
transporting one unit of the product from warehouse i to demand
location j is cij ≥ 0. The transportation problem can be formulated
into a standard linear programming problem as follows:

min
xij

M∑
i=1

N∑
j=1

cijxij

s.t.
N∑
j=1

xij ≤ ki ∀i ∈ M,

M∑
i=1

xij ≥ dj ∀j ∈ N ,

xij ≥ 0, ∀i ∈ M, j ∈ N .

(1)

The primal transportation problem (1) has the following dual for-
mat

max
ui,vj

N∑
j=1

djvj −

M∑
i=1

kiui

s.t. vj − ui ≤ cij, ∀i ∈ M, j ∈ N
vj, ui ≥ 0, ∀i ∈ M, j ∈ N .

(2)

E-mail address: liu_fang@ntu.edu.

Many works have studied conditions under which transporta-
tion problemswith no capacity constraints can be solved by greedy
algorithms (see for example Queyranne et al. [2]). One approach
to show greedy algorithms lead to optimality is to verify that the
transportation problems satisfy Monge conditions (Hoffman [9],
Bein et al. [3]) and the other approach is to consider its dual
(Lovász [11], Fujishige and Tomizawa [8], and Edmonds [5]). In
Faigle and Fujishige [6], they observe that ‘‘a class of greedy algo-
rithm solvable problems have optimal solutions that have the struc-
ture of chains’’. When warehouses have finite capacities, in general
greedy algorithm does not lead to optimal solutions and simplex
method is not efficient. As a result, many works focus on find-
ing other efficient algorithms to reduce the computational time
(Charnes and Cooper [4], Arsham and Kahn [1], Ji and Chu [10]).
Within this stream of literature, the most commonly applied al-
gorithm is the stepping stone algorithm that finds the optimal
solution by iteratively updating the transportation schedule with
feasible cycles of positive cost reductions (Charnes and Cooper [4]).
Also, Ji and Chu [10] developed a linear programming approach to
compute the optimal solution using the dual formulation. In our
paper, we show that the dual problem can be solved by a greedy
algorithm. However, different from the greedy algorithm defined
in Federgruen and Groenevelt [7] where the increase direction in
each iteration is a coordinate direction with the largest increment,
in this paper the increase direction is a set of coordinates that
results in the largest increment if each coordinate in the set is
increased by the same amount.

2. The greedy algorithm

We first convert the dual problem to a concave maximization
problem. Note that for any feasible ui and vj, we have vj ≤ cij + ui.

http://dx.doi.org/10.1016/j.orl.2017.05.009
0167-6377/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2017.05.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.05.009&domain=pdf
mailto:liu_fang@ntu.edu
http://dx.doi.org/10.1016/j.orl.2017.05.009


F. Liu / Operations Research Letters 45 (2017) 388–391 389

Because dj ≥ 0 the optimal v∗

j must satisfy v∗

j = mini∈M
{
cij + ui

}
for all j ∈ N . Substitute v∗

j = mini∈M
{
cij + ui

}
into Eq. (2), we

convert a linear programmingproblem into a concave optimization
problem:

max
ui≥0,i∈M

−

M∑
i=1

kiui +

N∑
j=1

dj min
i∈M

{
cij + ui

}
. (3)

Denote u = (u1, . . . , uM) and the objective function of (3) as
f (u) = −

∑M
i=1kiui +

∑N
j=1djmini∈M

{
cij + ui

}
. We have the

following lemma that characterizes properties of the objective
function f (u).

Lemma 1. f (u) is jointly concave and supermodular in u.

Lemma 1 shows basic properties of f (u). However, these prop-
erties are not enough to ensure that the greedy algorithm defined
in Federgruen and Groenevelt [7], i.e., increase ui that leads to the
largest increment, is optimal. To see this, consider the following
example.

Example 1. Let

f (u1, u2, u3, u4) = −2u1 − 3u2 − 2u3 − 7u4

+ min {u1, u2 + 1, u3 + 1, u4 + 3}
+10min {u1, u2, u3, u4 + 1}
+ min {u1 + 1, u2 + 1, u3, u4 + 3} .

At (u1, u2, u3, u4) = (0, 0, 0, 0), the marginal increment of f (u) in
the directions u1, u2 u3 and u4 are all negative, implying that none
of the direction ui will lead to a positive increment in the objective
function. However, in the direction (1, 1, 1, 0) the increment of
f (u) is 5. Thus, simply increasing the ui with the largest increment
is not optimal.

Example 1 implies that a greedy algorithm only increasing in
one coordinate direction at a time may not be optimal. Therefore,
we generalize the single-coordinate-greedy-algorithm to include
all subsets of coordinate directions. Denote 2M as the class of all
subsets of M and 2N as the class of all subsets of N . Given a
feasible u, we define a mapping σu : 2M

↦−→ 2N as σu (A) ={
j| argmini

{
cij + ui

}
⊆ A, j ∈ N

}
. In other words, σu (A) is the set

of j’s that mini
{
cij + ui

}
will increase if we increase all ui’s,i ∈ A

by the same relatively small amount. Let eA be an M dimension
vector with the ith element equals 1 if i ∈ A, and zero otherwise.
For any A ∈ 2M, define ∆u (A) = −

∑
i∈Aki +

∑
j∈σu(A)dj as the

increment of f (u) if the increasingdirection is eA. LetuA denote an
M dimension vector inwhich the ith element equals ui if i ∈ A and
zero otherwise. For two vectors u and v, u, v ∈ M, u ≤ v iff ui ≤

vi, i ∈ M. Similarly, we can define ‘‘≥’’ and ‘‘=’’ for vectors. We
have the following lemma that characterizes properties of σu (A)

and ∆u (A).

Lemma 2. (1) σu (∅) = ∅. σu (A) is monotone, that is, for any two
sets A ⊆ B ∈ 2M, we have σu (A) ⊆ σu (B).

(2) σu (A) is superadditive in union, that is, for any two sets A,
B ∈ 2M, we have σu (A)∪ σu (B) ⊆ σu (A ∪ B). Therefore, σu (A) is
also supermodular.

(3) σu (A) is additive in interception, that is, for any two sets A,
B ∈ 2M, we have σu (A) ∩ σu (B) = σu (A ∩ B).

(4) ∆u (∅) = 0. ∆u (A) is supermodular, that is, for any two sets
A, B ∈ 2M we have ∆u (A) + ∆u (B) ≤ ∆u (A ∪ B) + ∆u (A ∩ B).

(5) For any two sets A, B ∈ 2M and A ∩ B = ∅ , we have
∆u (A) + ∆u (B) ≤ ∆u (A ∪ B).

(6) For any u1 and u2, if u1
A = u2

A and u1
M\A ≤ u2

M\A, then
σu1 (A) ⊆ σu2 (A) and ∆u1 (A) ≤ ∆u2 (A).

We define the greedy algorithm as follows.

Algorithm 1. (1) Initialize: u = 0,Amax ∈ argmaxA∈2M∆u (A);
(2) While ∆u (Amax) > 0, do
u = u + sup

{
u|σu = σu+ueAmax

}
eAmax , Amax ∈ argmaxA∈2M

∆u (A);
return u∗

= u.

Next, we show that u∗, the solution returned by Algorithm 1, is
always optimal. Since f (u) is concave in u, it is sufficient to show
that u∗ is a local maximum. Similar to σu, we define amappingπu :

2M
↦−→ 2N as πu (A) =

{
j| argmini

{
cij + ui

}
∩ A ̸= φ, j ∈ N

}
.

In other words, σu (A) is the set of js that mini
{
cij + ui

}
will

decrease if we decrease all uis,i ∈ A for a same significantly small
amount. For any A ∈ 2M, define Λu (A) =

∑
i∈Aki −

∑
j∈πu(A)dj

as the decrement of f (u) if the decreasing direction is A. We have
the following lemma that characterizes properties of πu (A) and
Λu (A).

Lemma 3. (1) πu (∅) = ∅. πu (A) is monotone, that is, for any two
sets A ⊆ B ∈ 2M, we have πu (A) ⊆ πu (B).

(2) πu (A) is additive in union, that is, for any two setsA, B ∈ 2M,
we have πu (A) ∪ πu (B) = πu (A ∪ B).

(3) πu (A) is subadditive in interception, that is, for any two sets
A, B ∈ 2M, we have πu (A) ∩ πu (B) ⊇ πu (A ∩ B).

(4) Λu (φ) = 0. Λu (A) is supermodular, that is, for any two sets
A, B ∈ 2M we have Λu (A) + Λu (B) ≤ Λu (A ∪ B) + Λu (A ∩ B).

(5) For any u1 and u2, if u1
A ≤ u2

A and u1
M\A = u2

M\A, then
πu1 (A) ⊇ πu2 (A) and Λu1 (A) ≤ Λu2 (A).

(6) For any u1 and u2, if u1
A = u2

A and u1
M\A ≤ u2

M\A, then
πu1 (A) ⊆ πu2 (A) and Λu1 (A) ≥ Λu2 (A).

(7) For all A ∈ 2M, πu (A) ⊇ σu (A) and Λu (A) + ∆u (A) ≤ 0.

The following theorem shows that Algorithm 1 returns an opti-
mal solution of the dual problem.

Theorem1. If Algorithm1 stops at someu, then it returns the optimal
policy of the dual problem, u = u∗. Otherwise, the dual problem
is unbounded and the primal problem is infeasible. In each iteration,
Amax can be found by maximizing a supermodular set function. Thus,
(2) can be solved by a greedy algorithm.

Proof. First, it is clear that when the algorithm stops at some u ,
the objective function cannot increase in any direction by adding
a positive amount to u, that is, ∆u (A) ≤ 0 for all A ⊆ 2M. To
show Algorithm 1 is optimal, we only need to show that u is a
localmaximum,which is equivalent to verifying that the algorithm
stops at some u = u∗ such that Λu∗ (A) ≤ 0 for all A ⊆ 2M.

Now suppose the above is not true, that is, there exists a set R
such that Λu∗ (R) > 0 . Denote the set A∗

max ⊆ 2M as the set that
is picked for increment before reaching u∗. IfR ⊆ A∗

max, then for an
arbitrary small ϵ > 0, from the definitions of ∆u (A) and Γu (A),
we have

∆u∗−ϵuA∗
max

(
A∗

max \ R
)

= ∆u∗−ϵuA∗
max

(
A∗

max

)
+ Λu∗−ϵuA∗

max
(R)

> ∆u∗−ϵuA∗
max

(
A∗

max

)
,

which contradicts with A∗
max ∈ argmaxA∈2M∆u∗−ϵuA∗

max
(A).

Therefore, we can safely assume R ̸⊆ A∗
max. Then consider the

last iteration that some elements in R are selected in Algorithm 1
for increment. That is, all iterations afterwards only increases
uis that i ̸∈ R. Suppose u0 is the vector at the beginning of that
iteration, u1 is the vector at the end of the iteration andA1

max is the
corresponding increment set. Then according to Lemma 2(6) part
two,

∆u1
(
A∗

max

)
≥ ∆u∗

(
A∗

max

)
> 0.



Download English Version:

https://daneshyari.com/en/article/5128360

Download Persian Version:

https://daneshyari.com/article/5128360

Daneshyari.com

https://daneshyari.com/en/article/5128360
https://daneshyari.com/article/5128360
https://daneshyari.com

