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a b s t r a c t

Bivariate gamma distribution (BGD) can be used in hydrology, stochastic modeling and reliability theory.
Wederive the Laplace–Stieltjes transformof the distribution ofmax{Y1, Y2}whena randomvector (Y1, Y2)
follows Kibble’s BGDwith integral shape parameter. This is achieved by showing that max{Y1, Y2} has the
same distribution as the first passage time of a continuous time Markov process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Bivariate gamma distributions (BGDs) can be used to construct
models for positively correlated data, with positive skewness in
each dimension. Unlike the normal distribution, the gamma dis-
tribution does not have a unique natural extension to the bivariate
or the multivariate case. Therefore, a number of different kinds of
BGDs have been proposed, refer to Balakrishnan and Lai [3]. One
particular BGD that has received considerable attention is the one
proposed by Kibble [9].

Kibble’s BGD requires four parameters α > 0, µ1 > 0, µ2 > 0
and ρ, 0 ≤ ρ < 1. If a random vector (Y1, Y2) follows Kibble’s BGD
with parameters α,µ1,µ2 and ρ, then the joint probability density
function is given by

fY1,Y2 (y1, y2) =
(µ1µ2)α

(1 − ρ)Γ (α)

( y1y2
ρµ1µ2

) α−1
2

× exp
(
−

µ1y1 + µ2y2
1 − ρ

)
× Iα−1

(2
√

ρµ1µ2y1y2
1 − ρ

)
, (1)

for y1 > 0, y2 > 0, where Γ (α) is the gamma function defined as
Γ (α) =

∫
∞

0 tα−1e−tdt , and Iα(·) is the modified Bessel function of
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the first kind of order α defined as

Iα(z) =

∞∑
j=0

1
Γ (α + j + 1)j!

( z
2

)2j+α

.

The marginal distributions of Y1 and Y2 are both gamma with
the same shape parameter α, and rate parameters µ1 and µ2,
respectively, and the correlation coefficient between Y1 and Y2 is
ρ. The joint Laplace–Stieltjes transform (LST) is given by

E[e−s1Y1−s2Y2 ] =

(
µ1µ2

(µ1 + s1)(µ2 + s2) − ρs1s2

)α

.

In the special case when α = 1, Kibble’s BGD is the well-known
Downton’s bivariate exponential distribution (BED) with three pa-
rameters µ1, µ2, and ρ (refer to [6]).

Kibble’s BGD has been used in several research areas. For exam-
ple, Phatarford [13] used this distribution as a model to describe
summer and winter streamflows. Izawa [8] used this distribution
to describe the joint distribution of rainfall at two nearby rain
gauges. Smith et al. [14] investigated applications to wind gust
modeling for the ascent flight of the Space Shuttle. Chatelain
et al. [4] studied applications to image registration and change
detection. For applications of Downton’s BED to queueing systems,
refer to Conolly and Choo [5], Kim et al. [10] and Langaris [11].

Iliopoulos et al. [7] described Bayesian estimation for the pa-
rameters of Kibble’s BGD through a Markov chain Monte Carlo
scheme. Izawa [8] obtained the density functions and moments of
Y1+Y2, Y1Y2, and Y1/Y2, when a randomvector (Y1, Y2) follows Kib-
ble’s BGDwith the same rate parameters (i.e.,µ1 = µ2). Nadarajah
and Kotz [12] derived the density functions andmoments of Y1+Y2
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and Y1/(Y1 + Y2), when µ1 = µ2. Whereas the distributions of
extreme statistics min{Y1, Y2} andmax{Y1, Y2}were obtained only
when a random vector (Y1, Y2) follows BED, refer to Downton [6].

In this paper, we derive the LST of the distribution of
max{Y1, Y2} when (Y1, Y2) has Kibble’s BGD with integral shape
parameter α. This is achieved by showing that max{Y1, Y2} has
the same distribution as the first passage time of a continuous
time Markov process, and then by analyzing the first passage time
by the matrix analytic method. This paper generalizes the result
of Downton [6], where he obtained the LST of the distribution
of max{Y1, Y2} when α = 1, by direct integration of the joint
probability density function (1). The generalization is nontrivial
because the method of direct integration used by Downton [6] is
difficult to be applied to the case of general α. It is noticeable that
themethod used in our generalization is completely different from
that of Downton [6].

2. A representation of Kibble’s bivariate gamma random vector

Let a random vector (Y1, Y2) have Kibble’s BGDwith parameters
α, µ1, µ2, and ρ, where α = n for an integer n. In this section
we will show that the distribution of max{Y1, Y2} is represented
as the first passage time of a continuous time Markov process. For
notational convenience, we set

νi =
µi

1 − ρ
, γi =

ρµi

1 − ρ
, i = 1, 2,

and so µi = (1−ρ)νi, γi = ρνi, µi + γi = νi, i = 1, 2. We consider
a two-dimensional continuous time Markov process {(M(t), J(t)) :

t ≥ 0} with the state space {(n, i) : n = 0, ±1, ±2, . . . , i =

0, 1, 2, . . .}, and the state transition diagram shown in Fig. 1. For
l = ±1, ±2, . . . , i = 0, 1, . . ., let τ

(l,i)
(0,0) be the first passage time

from state (l, i) to state (0, 0) by the process {(M(t), J(t)) : t ≥

0}. As shown in the following theorem, max{Y1, Y2} has the same
distribution as the first passage time from state (0, n) to state (0, 0)
by the process {(M(t), J(t)) : t ≥ 0}. From now on, ‘‘ d=’’ denotes
‘‘equal in distribution’’.

Theorem 1. If (Y1, Y2) follows Kibble’s BGD with parameters α = n,
µ1, µ2, and ρ, then

max{Y1, Y2}
d
= τ

(0,n)
(0,0) .

We need the following three lemmas to prove Theorem 1. To
present the first lemma, we note that Kibble’s bivariate random
vector is expressed as the sum of Downton’s bivariate random vec-
tors. Let {(Xn1, Xn2) : n = 1, 2, . . .} be a sequence of independent
and identically distributed (i.i.d.) bivariate random vectors with
Downton’s BED of parameters µ1, µ2 and ρ, and put

Sni =

n∑
k=1

Xki, i = 1, 2.

Then (Sn1, Sn2) has Kibble’s BGD with parameters α = n, µ1, µ2,
and ρ. The following lemma provides a simple representation for
(Sn1, Sn2), which follows from the result of Al-saadi and Young [2].

Lemma 1. For i = 1, 2, let {E (k,i)
νi

: k = 1, 2, . . .} be a sequence of
i.i.d. random variables with an exponential distribution of parameter
νi. Let N1,N2, . . . ,Nn be i.i.d. random variables with a geometric
distribution of parameter 1 − ρ, i.e., P(Ni = k) = ρk−1(1 − ρ),
k = 1, 2, . . .. Assume that the random variables E (k,i)

νi
, k = 1, 2, . . . ,

i = 1, 2 and Ni, i = 1, . . . , n are independent. Then we have

(Sn1, Sn2)
d
=

( Nn∑
k=1

E (k,1)
ν1

,

Nn∑
k=1

E (k,2)
ν2

)
, n = 1, 2, . . . ,

where Nn =
∑n

i=1Ni is a negative binomial random variable with
parameters n and 1 − ρ.

To state the next lemma, we introduce the random vector

(I1(p1, p2, . . . , pn), I2(p1, p2, . . . , pn), . . . , In(p1, p2, . . . , pn)),

which has a multinomial distribution with parameters 1 and
(p1, . . . , pn). For example, (I1(p1, p2, p3), I2(p1, p2, p3), I3(p1, p2,
p3)) has value (1, 0, 0) with probability p1, value (0, 1, 0) with
probability p2, and value (0, 0, 1) with probability p3. With this
notation we have the following lemma. The proof is given in the
online supplementary material (see Appendix A).

Lemma 2. Let {E (k,i)
νi

: k = 1, 2, . . .}, i = 1, 2 and Nn be the
same as in Lemma 1. Moreover, let Eν be a random variable with an
exponential distribution of parameter ν. Assume that all these random
variables are independent. Then we have the following.

(i) For n = 1, 2 . . ., m = 1, 2 . . . ,

max
{Nn+m∑

k=1

E (k,1)
ν1

,

Nn∑
k=1

E (k,2)
ν2

}
d
= Eµ2+γ2+ν1

+ I1(q1, q2, q3)max
{Nn−1+m+1∑

k=1

E (k,1)
ν1

,

Nn−1∑
k=1

E (k,2)
ν2

}
+ I2(q1, q2, q3)max

{Nn+m+1∑
k=1

E (k,1)
ν1

,

Nn∑
k=1

E (k,2)
ν2

}
+ I3(q1, q2, q3)max

{Nn+m−1∑
k=1

E (k,1)
ν1

,

Nn∑
k=1

E (k,2)
ν2

}
, (2)

where (q1, q2, q3) =
(

µ2
µ2+γ2+ν1

,
γ2

µ2+γ2+ν1
,

ν1
µ2+γ2+ν1

)
and

Ii(q1, q2, q3), i = 1, 2, 3, are independent of all other random
variables.

(ii) For n = 1, 2 . . ., m = 1, 2, . . . ,

max
{ Nn∑

k=1

E (k,1)
ν1

,

Nn+m∑
k=1

E (k,2)
ν2

}
d
= Eµ1+γ1+ν2

+ I1(r1, r2, r3)max
{Nn−1∑

k=1

E (k,1)
ν1

,

Nn−1+m+1∑
k=1

E (k,2)
ν2

}
+ I2(r1, r2, r3)max

{ Nn∑
k=1

E (k,1)
ν1

,

Nn+m+1∑
k=1

E (k,2)
ν2

}
+ I3(r1, r2, r3)max

{ Nn∑
k=1

E (k,1)
ν1

,

Nn+m−1∑
k=1

E (k,2)
ν2

}
,

where (r1, r2, r3) =
(

µ1
µ1+ν2+γ1

,
γ1

µ1+ν2+γ1
,

ν2
µ1+ν2+γ1

)
, and

Ii(r1, r2, r3), i = 1, 2, 3, are independent of all other random
variables.

(iii) For n = 1, 2 . . . ,

max
{ Nn∑

k=1

E (k,1)
ν1

,

Nn∑
k=1

E (k,2)
ν2

}
d
= Eµ1+µ2+γ1+γ2

+ I1(δ1, δ2, δ3, δ4)max
{Nn−1+1∑

k=1

E (k,1)
ν1

,

Nn−1∑
k=1

E (k,2)
ν2

}

+ I2(δ1, δ2, δ3, δ4)max
{Nn−1∑

k=1

E (k,1)
ν1

,

Nn−1+1∑
k=1

E (k,2)
ν2

}
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