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a b s t r a c t

This paper studies joint dynamic pricing and capacity control for hotel and rental operations when
advanced demand information (ADI) is available for some but not all customers. Dynamic pricing for non-
ADI customers and capacity control for ADI customers are jointly considered with a stochastic dynamic
programming model. We examine structural properties and fully characterize optimal policies. Based
on monotone properties of optimal policies, we develop effective pricing and rationing heuristics, and
investigate the value of demand information through numerical studies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a popular practice ofmatching supplywith demand, capacity
control (see [15] and [20]) and dynamic pricing (see [5,7,8]) are
widely used in revenuemanagement (RM)when selling perishable
products such as airline seats (see [12]), hotel rooms (see [4]) and
car rental services (see [17]). Hotel groups such as Marriott and
Intercontinental replaced fixed consortia rates with dynamic pric-
ing in the early 2000s, when Hilton used dynamic ‘‘best available
rates’’ as an alternative to fixed negotiated rates for its corporate
accounts too (see [19]). China Auto Rental (CAR), the largest car
rental company in China, gained substantial competitive advan-
tage through its excellent dynamic pricing and capacity control
operations (according to a report by Credit Suisse, 2014).

Different from the airline industry, two complicated issues
arise when applying RM to hotel or rental services. First is the
stochastic property of available capacity due to the uncertainty
in capacity occupation duration of customers. This is in sharp
contrast to airlines, where the duration of occupying a seat in
a particular flight is predetermined almost surely. The random
arrival of customers and the uncertain length-of-stay/length-of-
rental (LOS/LOR) have jointly posed a great challenge to revenue
management. The second issue is the presence of different types
of customers, including customers providing advanced demand
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information (ADI customers) through reservations vis-à-vis ran-
dom walk-in customers (non-ADI customers) to demand service
immediately. Many ADI customers are from contracted companies
with certain service obligations, whereas non-ADI customers are
often leisure customers ‘‘shopping for price’’ [9]. The rates for ADI
customers are considered to be pre-negotiated and fixed with an
admission control through capacity rationing, whereas rates for
non-ADI customers are controlled through dynamic pricing.

Clearly, with additional information of future demand collected
through ADI customers’ reservations, a better match between de-
mand and available capacitymay be achieved. However, customers
may provide only estimates of the due dates when making reser-
vations. The realized due dates may differ significantly from the
initial estimates since customers may either extend their duration
or cancel some of the reservation days before the due date. To
represent such industry reality, a randomdemand lead time is used
to capture the duration extension whereas possible cancelation
of ADI customers is modeled through the show-up probability.
Moreover, to allow for heterogeneity among ADI customers, we
consider multiple classes of customers, each of which has different
demand lead time and show-up probability. Apparently, these
heterogeneous customers generate different revenues to the firm
and incur different penalties (e.g., loss of goodwill) for rejected
services.

We study the joint decisions of dynamic pricing for non-ADI
customers and capacity control for ADI customers, a common
scenario in the hotel and rental service industries. The advanced
demand information is imperfect in the sense that demand lead
time is random and on-hand reservations may be canceled. Many
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important decisions need to be made in such a framework. What
is the optimal strategy of capacity rationing for ADI customers?
What is the optimal price the firm should charge for non-ADI
customers? Howwill the lead time and show-up probability affect
the pricing decision?Howshould the two control policies be jointly
determined to enhance the total revenue? What is the value of
advanced demand information? To address these questions, we
formulate the problem as amulti-server loss system (see examples
of [16,17]) through continuous-time infinite-horizon Markov De-
cision Processes (MDP), where both the arrivals of customers and
the capacity occupation durations are stochastic under imperfect
ADI.

Our findings and contributions are multi-fold. First, we charac-
terize the optimal capacity rationing strategy as a state-dependent
multi-level threshold, which is non-increasing in the number of
ADI reservations, the number of customers in service, the ADI
demand lead time and show-up probability. Reverse monotonicity
can be obtained for the optimal price for non-ADI customers.
The optimal price is always greater than the myopic price which
ignores the opportunity cost of capacity. Second, we show that
the value of ADI is most significant when the ADI demand lead
time is neither too short nor too long, which is different from the
finding of [16] obtained with a deterministic demand lead time.
Third, the heuristics developed in this study allow us to identify
effective control policies. Specifically, when thewillingness-to-pay
of non-ADI customers is relatively low, like in non-holidays, it is
effective not to ration capacity for ADI customers and set price for
non-ADI customers by multiplying the myopic price by a simple
load-dependent factor. When the willingness-to-pay of non-ADI
customers is relatively high, like in holidays, it is effective to use
a one-dimensional and load-dependent linear threshold to ration
capacity for ADI customers, and use the same price strategy for
non-ADI customers.

Our paper is closely related to two streams of literature
on capacity rationing and dynamic pricing for stochastic ser-
vice/production systems, when the two decisions may be made
independently or jointly and advanced demand information may
or may not be available. The first stream is on capacity rationing
of rentals (see [16,17]) or hotels (see [3,4]) with ADI or without
ADI. Different from [17] without ADI and [16] with deterministic
advanced demand lead time, we consider the case of stochastic
lead time and characterize the structure of the optimal strategies.
The studies of [4] and [3] analyze the hotel room rationing policy
for single night stay with reservations and develop heuristics for
multiple nights through deterministic linear programming (DLP).
Different from the standard hotel RM model which adopts DLP
based bid-price control heuristics for given LOS, we study the
optimal control policies for random LOS of multiple classes with
imperfect ADI, focusing on investigating structural properties and
the value of ADI to gainmanagerial insights. In addition,most stud-
ies of this streamdid not integrate capacity rationingwith dynamic
pricing under ADI. The second stream focuses on dynamic pricing
for perishable products (see [7] and [8]) or production/queueing
systems for multiple types of customers without ADI (see [1]
and [6]). [9] studies a similar problem like ours on joint capacity
control and dynamic pricing, but ADI is not considered. Ourwork is
also closely related to the studies ofmanufacturing and production
system with ADI (see [10,11] and [2]). Different from the hotel or
rental service system in our study, there is no uncertain duration
of the customer (or product) in the inventory system. Our model
integrates ADI with capacity rationing and dynamic pricing in a
setting of stochastic system with both random customer arrivals
and random resource occupation duration. Our paper is motivated
by real industry practices in the hotel and rental service sectors,
allowing our study to provide some fresh insights.

The remainder of this paper is organized as follows. Section 2
introduces the model and analytical results. Section 3 reports nu-
merical studies and heuristics. Concluding remarks are provided in
the last section. All the analytical proofs are provided in our online
supplementary material (see Appendix A).

2. Model

2.1. Model formulation

We consider a hotel or a rental company with c rooms or cars.
The firm serves two types of customers, namely ADI customers
and non-ADI customers. ADI customers make a reservation in
advance and pay the pre-negotiated price when they show up for
service. ADI customers are classified into n classes according to
the demand lead time and show-up probability. The lead time of
class-i (i = 1, . . . , n) ADI customer is assumed to be exponentially
distributed with mean 1/νi and the show-up probability is qi.
All ADI reservations are accepted until the accumulated volume
reaches the upper limit level mi for class-i which is pre-set by the
company. When a class-i ADI demand is due (i.e., when a class-i
ADI customerwith a reservation shows up), the firm should decide
whether to fill the demand (and earn a lump-sum revenue ri) or to
reject the demand (by paying a lump-sum penalty πi). Note that
we adopt lump-sum revenue in our formulation, which can be
transformed to an equivalent unit-time revenue by adopting the
similar approach as [17] and [9].

Non-ADI customers and class-i ADI reservations arrive accord-
ing to a Poisson process with rate λ0 and λi, respectively. The
company adopts dynamic pricing for non-ADI customerswhowalk
in without prior booking and request the service immediately.
Non-ADI customers have awillingness-to-paywith the cumulative
distribution function F (·). The company can influence or adjust
demand by changing the spot price p, p ∈ P = (0, p∞), where
p∞ is a null price for which limp→p∞

F̄ (p) = 0 (see [7] and [8]),
where F̄ (p) = 1 − F (p). Therefore, the expected demand rate
of non-ADI customers at price p is λ0F̄ (p), and the probability of
no demand realized is λ0F (p). The capacity occupation duration is
exponentially distributed with mean of µ−1 (average LOS/LOR).

Let v(x, y) be the optimal expected total discounted revenue
over the infinite horizon, given x customers in service and y =

(y1, . . . , yn) ADI reservations on hand. Using the standard uni-
formization method (see [14] and [18]), let the uniform rate γ =

λ0 +
∑n

i=1λi +
∑n

i=1miνi + cµ and, without loss of generality,
α + γ = 1 where α is the discount rate. The optimality equation is
given by

v(x, y)

=

n∑
i=1

[
λiTiv(x, y) + νiyi

(
qiHiv(x, y) + (1 − qi)v(x, y − ei)

)
+ νi(mi − yi)v(x, y)

]
+ λ0T0v(x, y) + µxv(x − 1, y) + µ(c − x)v(x, y), (1)

where

T0v(x, y) = max
p∈P

{
F̄ (p)

(
v(x + 1, y) + p

)
+ F (p)v(x, y)

}
(2)

Tiv(x, y) =

{
v(x, y + ei), if yi < mi,
v(x, y), if yi = mi,

(3)

Hiv(x, y) =

⎧⎪⎨⎪⎩
max{v(x + 1, y − ei) + ri, v(x, y − ei) − πi},

if x < c ,
v(x, y − ei) − πi,

if x = c ,

(4)

and p∗
= p∞ when x = c; v(x − 1, y) = 0 when x = 0;

v(x, y − ei) = 0 when yi = 0, i = 1, . . . , n. The operator T0v(x, y)
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