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a b s t r a c t

Obtaining analytic expressions for characteristics in probabilistic systems with finite buffer capacities
such as (higher) moments and tail probabilities of stationary waiting times, and blocking probabilities
is by no means trivial. This is also true even for a system with deterministic processing times. By using
the max–plus algebraic approach in this study, we introduce closed-form formulae for characteristics of
stationary waiting time in a complete buffer-sharing m-node tandem system with constant processing
times. Numerical examples are also provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For design and maintenance purposes, it is sometimes neces-
sary to investigate the queueingmechanisms embedded in various
computer systems, telecommunication networks, and automated
manufacturing systems. Although finite-capacity queueing sys-
tems have been widely studied, research in this area has ren-
dered few explicit results. Due to the difficulties posed by finite
capacities, analytic solutions are difficult to obtain; most studies
have been limited in number of nodes, distributions of arrivals,
service times, and so on. There are, however, a few analytic solu-
tions to finite-capacity queues for special cases such asM/M/1/K ,
M/G/c/c , M/G/1/1, M/G/1/2, and so on. Tijms [14] presented
recursive formulae for stationary distributions and blocking proba-
bilities inM/G/c/K queues (also see Takagi [13]). Brun and Garcia
[6] derived analytical (transform-free) solutions for steady-state
distribution in M/D/1/K queues by using a generating function.
The standard queueing theory is not yet applicable, however, to
general queues such as multi-node, multi-server, and generally
structured queues. To achieve analytic solutions for multi-node
systems, most studies have used decomposition methods by de-
composing the network into subnetworks and treating each sub-
network independently with adjusted parameters such as input
rates and service rates (see, e.g., Jun and Perros [7]; Shi [12]; and
the references therein).
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Unlike the infinite buffer case, the distribution of waiting time
in tandem queues with a finite buffer is not simply given as a
product form due to the blocking phenomena between nodes.
Therefore, various approximation methods using decomposition
and simulation have been proposed. In this study, however, we de-
velop an exact solution procedure based onmax–plus algebra. The
max–plus linear systemuses only twooperators, ‘‘max’’ and ‘‘plus’’,
to represent its performance characteristics. It is well known that
the max–plus linear system (MPL) includes various probabilistic
systems commonly found in telecommunication and computer
networks. Ayhan and Seo [1], Baccelli et al. [3] provided some pre-
liminaries on max–plus algebraic representation of waiting times
in MPLs.

Conceptually, a buffer sharing policy can be applied to various
systems without system configuration limitations. However, we
here focus on a tandem system consisting of m nodes having
constant processing times and having a Poisson arrival process
with rate λ in order to obtain analytical solutions for waiting time
perspective.

Two typical blocking policies adopted in many researches are
communication blocking (blocking before service) and production
blocking (blocking after service). Under a production blocking pol-
icy the common buffer is occupied in advance by a blocked job
waiting at node 0 (a dummy node). However, under a communi-
cation blocking policy the common buffer is occupied only when a
blocked job becomes unblocked and is joining in node 1 (the first
node in our actual system). Communication blocking is more suit-
able for representing the blocking phenomena prevalent in general
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Fig. 1. A buffer-sharing tandem queue.

queueing systems and has simpler expressions in max–plus alge-
braic notation than production blocking. Thus it is assumed that
pulling a job between nodes 0 and 1 in the system follows a
communication blocking policy. Under a complete buffer sharing
policy, we introduce explicit expressions for higher moments and
tail probability of stationary waiting times in an m-node tandem
system with constant processing times, and also obtain a closed-
form formula for blocking probability.

2. Explicit expression for moments of waiting time

First we introduce brief preliminaries on max–plus algebraic
approach. Baccelli and Schmidt [5] introduced that the dynamics
of max–plus linear systems with α nodes can be described by the
α-dimensional vectorial recurrence equations

Xn+1 = An ⊗ Xn ⊕ Bn+1 ⊗ Tn+1 (1)

with an initial condition of X0, where the ⊕ refers to maximization
and the ⊗ refers to addition for scalars and max–plus algebra
product for matrices, {Tn} is a non-decreasing sequence of real-
valued random numbers (e.g. the epochs of the Poisson arrival
process with rate λ), {An} and {Bn} are stationary and ergodic
sequences of real-valued randommatrices of size α ×α and α × 1,
respectively, and {Xn} is a sequence of α-dimensional state vectors
referring to the absolute time of the beginning of the nth service at
each node. One is more interested in the differencesW i

n = X i
n − Tn

(like the waiting time of the nth customer until he joins server i).
Let τn = Tn+1 − Tn with T0 = 0 and let C(x) be the α × α matrix
with all diagonal entries equal to −x and all non-diagonal entries
equal to −∞. By subtracting Tn+1 from both sides of (1), the new
state vectorWn+1 can be expressed as

Wn+1 = An ⊗ C(τn) ⊗ Wn ⊕ Bn+1,

forn ≥ 0 andwith the initial conditionW0. They also demonstrated
that under certain conditions, the dynamics of Poissondrivenmax–
plus linear systems could be described by vectorial recurrence
equations. For all λ < a−1, where λ is the arrival rate and a is
themaximal Lyapunov exponent of the sequence {An}, a stationary
waiting timeW is determined by the matrix-series

W = D0 ⊕

⨁
k≥1

C(T−k) ⊗ Dk

with D0 = B0, W0 = B0, and for all k ≥ 1

Dk =

( k⨂
n=1

A−n

)
⊗ B−k. (2)

Note that the random vectorDn plays an important role in comput-
ing characteristics of waiting times, and Di

n, the ith component of
Dn, refers to the time elapsed from arrival until the beginning of his
process at node i when there exist n customers in the system and
they can be interpreted as a critical path in a task graph.

Later, under certain conditions, Baccelli et al. [4] showed that
for a stationary Poisson process with intensity λ and a Riemann

Fig. 2. A buffer-sharing tandem queue with a dummy node.

integrable non-negative function G : R+

0 → R+

0 , the expectation
E[G(W i)] of the functional G(·) applied to the ith component of the
steady-state vector W can be expanded as a Taylor series of order
m with respect to λ, i.e.,

E[G(W i)] =

m∑
k=0

λkE[qk+1(Di
0, . . . ,D

i
k)] + O(λm+1) (3)

for all arrival intensities λ ∈ [0, a−1
], where

qk+1(x0, x1, . . . , xk)

=

k∑
n=0

(
k
n

)
(−1)k−nH [k](xn) −

k−1∑
n=0

k−1∑
j=n

(
j
n

)
(−1)j−nH [j](xn){

pk−j(xn+1, . . . , xk−j+n) − pk−j(xn, . . . , xk−j+n−1)
}

with H [0](x) = G(x) and H [n](x) is recursively defined by a suitably
chosen version of the indefinite Riemann-integral

∫
H [n−1](x)dx.

Baccelli and Schmidt [5] first defined the polynomials pk(· · · ) in
a different way, but it is shown in Baccelli et al. [4] that when
G(x) = x the polynomials qk(· · · ) give alternative expressions of
the polynomials pk(· · · ) (see (7)).

A buffer-sharing systemconsisting ofmnodes in series is shown
in Fig. 1. Let σ i, i = 1, . . . ,m, be a processing time at node i
and K (≥m) be the capacity of a common buffer completely shared
by m nodes. We assume that arrivals from the outside follow a
Poisson process with rate λ. A stability condition (ρ < 1 ) and an
unlimited buffer capacity of the first node are basic assumptions
in our max–plus algebraic approach, the Taylor series expansion.
Thus, the finite-capacity assumption of the first node depicted in
Fig. 1 needs to be relaxed. The relaxed model can be obtained by
inserting a dummy node (node 0) with zero processing time (σ 0

=

0) and infinite capacity (K0 = ∞) as shown in Fig. 2. This dummy
node is assumed to describe unlimited arrivals of jobs to systems
that never starve. Figure 2 shows a line production system con-
sisting of m nodes where they share a common buffer of capacity
K (≥m).

To avoid unnecessary complex notation we reduce the number
of nodes by one and renumber them from 1 to m. Then we can
obtain the following recurrence expression for X i

n, the time epoch
which the nth process can start at node i. For node 1,

X1
n+1 = σ 0

n+1 ⊗ X0
n+1 ⊕ σ 1

n ⊗ X1
n ⊕ σm

n−K+1 ⊗ Xm
n−K+1, (4)

and for node i, i ≥ 2,

X i
n+1 = σ i−1

n+1 ⊗ X i−1
n+1 ⊕ σ i

n ⊗ X i
n (5)

where σ i
n is the nth processing time at node i for i ≥ 1 and σ 0

n (= τn)
is the interarrival time between the nth arrival and his predecessor
in the external arrival stream. Because these expressions satisfy
the expression of (1) our complete buffer-sharing system is a
max–plus linear system. Then with the definition of (2) and some
(but tedious) algebra, (4) and (5) can be translated by using the
conventional algebra.
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