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a b s t r a c t

Weoffer a newprofit-maximizingmechanism for Naor’sM/M/1model, and bound the loss incurredwhen
the waiting room’s size is limited or the server is restricted to a static price and FCFS discipline.
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1. Introduction

Naor’s [26] seminal work on strategic behavior in queues
assumes a first-come first-served (FCFS) observableM/M/1 system
with homogeneous customers. Naor shows that a fixed price is
sufficient to induce socially-optimal behavior. However, a fixed
price is not sufficient to maximize profits because, in general, it
does not fully extract customer surplus.

This paper is about profit maximization in Naor’s model. It
answers the following questions:

1. Is there a mechanism that maximizes profits and is simple
to implement? Three profit-maximizing mechanisms have
been offered in the literature. They preserve the property
that the queue length is observable to the customers at all
times, and involve dynamic pricing or a preemptive last-
come first-served (LCFS-PR) service order, both are difficult
to implement. We offer a mechanism where the queue
manager conceals the queue-length and only informs the
customers of whether the queue length is below Naor’s
socially optimal threshold n∗ (low congestion) or above it
(high congestion).We emphasize the advantages of the new
mechanism for both server and customers.

2. How high can the loss of profit be when the queue manager
is restricted to the FCFS service order and a fixed price? We
numerically study this loss and show that Naor’s price may
provide in the worst case only about 81% of the potential
profit.
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3. How important is it to enable long queues? We observe that
a close-to-maximum profit can be obtained while strongly
limiting the queue length, and bound the loss of profit when
the waiting-room’s size is below optimal. Maintaining a
waiting roomof size k < n∗ may cause a loss of only k/(k+1)
of the profit. Hence, if space is costly, a small waiting room
is recommended. We also bound the gain of extending the
waiting room by one unit.

4. What if the high and low congestions are exogenously defined?
We consider high–low pricing, a restricted type of dynamic
pricing. For a given threshold N , the admission fee is pL if
the number of customers in the system is at most N −1, and
pH otherwise.We observe that customers are encouraged to
join the queue in the high-congestion states, by setting pH <

pL, only if N < n∗. The profit loss when N is exogenously
restricted is surprisingly small.

2. Literature review

Similar to our findings, Johansen [21] observes that the loss
of profits associated with static pricing relative to the optimal
dynamic pricing is typically small. The system considered is how-
ever different, consisting of an M/D/1 queue with observable work
backlog, uniformly distributed service valuations, and an exoge-
nous upper bound on the waiting time of admitted customers. A
numerical study indicates that the loss of static control does not
exceed 3%. See §2.6 in [18] for related literature.

We consider here the loss of profits when the owner of Naor’s
type service system is restricted in its service and pricing policies.
The loss ofwelfare in such a systemwhen customers’ behavior can-
not be controlled, often called the price-of-anarchy, is the subject
of Gilboa-Freedman, Hassin, and Kerner [15]. The bounds obtained
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there are qualitatively different from those in our case, being quite
small for most values of ρ < 1 but infinite when ρ > 1.

We also raise the question of the significance of maintaining a
queue and keeping waiting spaces. A similar problem is solved by
Masarani andGokturk [24]who consider anM/M/1/N queuewhere
the server incurs a cost C(N) and N is a decision variable. In their
model, the customers are not delay sensitive.

Several papers consider high–low delay announcements. Allon,
Bassamboo and Gurvich [3] assume that customers cannot verify
the delay information provided by the firm. Altman and Jimenéz [5]
assume that customers obtain high–low congestion information,
but the admission fee is not changed for each case. Dobson and
Pinker [11] assume heterogeneous customer waiting costs. When
the system is below threshold, the queue is observable. The ad-
mission fee always stays the same. Hall, Kopalle, and Pyke [16] and
Mutlu, Alanyali, Starobinski, and Turhan [25] consider threshold
pricing policies, where secondary customers are blocked when the
system is congested. Le Ny and Tuffin [27] consider a queueing
model where a larger charge is imposed when occupancy is above
threshold. Note that in ourmodel the admission fee is smaller when
the queue is long. Maoui, Ayhan and Foley [23] study a queue with
a fixed price for queue lengths below a threshold and an infinite
price above it. There are no customer waiting costs but there are
server holding costs instead.

Other models assume that service rate changes when queue
length exceeds a threshold. For example, Dimitrakopoulos and
Burnetas [8–10] and Li and Jiang [22] discuss queueing systems
in which the service rate increases when the system congestion
is above threshold. Perel and Yechiali [28] consider fast and slow
phases of service rate. During slow phases customers become im-
patient and may leave the queue. Chan, Yom-Tov, and Escobar [6]
use a fluid model to examine conditions where speedup of service
when queue length exceeds a threshold is beneficial even though
faster service increases the need for rework. Shi, Shen, Wu and
Cheng [29] consider a model with breakdowns. The firm changes
the price between exogenous p1 and p2, depending on the queue
length and server’s state.

Economou and Kanta [12] deal with an M/M/1 model in which
the waiting space of the system is partitioned into compartments
of fixed size, and the customer is told which compartment he will
enter or the position within the compartment he will have. Our
system has two compartments, the first with fixed size N , the
second with unlimited size, and an arriving customer is told the
compartment hewill enter. However, admission fees in [12] do not
change for different queue lengths.

The literature on strategic models of queueing systems is sur-
veyed by Hassin and Haviv [19] and Hassin [18]. An early version
of this paper was presented in [20].

3. Mechanisms for profit maximization

Naor (1969) assumes anM/M/1 FCFS systemwithhomogeneous
risk-neutral customers arriving at rate Λ, service rate µ, service
value R and waiting costs C per unit time. The maximal value of
social welfare is attained if customers join the queue only when it
is shorter than threshold n∗. Denote by S∗ the social welfare rate
under the threshold n∗. Obviously, if customers enjoy (expected)
nonnegative utilities, the server’s profit rate cannot be greater
than S∗. A server can only attain this profit if customers join in
accordance to the threshold n∗ and give all their welfare to the
server. We now describe three known pricing mechanisms that
achieve these properties, and add a new method.

1. Chen and Frank [7] observe that a profit equal to S∗ can be
achieved by utilizing a FCFS regime with dynamic pricing,
i.e., charging p(n) = R − C n+1

µ
from a customer observing

n < n∗ customers upon arrival, and a higher price otherwise.
This pricing induces socially optimal behavior, the server
receives all of the welfare generated by the system, and the
net utility of each customer is equal to zero.

2. Hassin [17] shows that the LCFS-PR regime induces socially
optimal customer behavior. All arriving customers join and
the last customer in the queue decides whether or not to
abandon the queue. Since this customer remains last until
served or abandoning the queue, he imposes no externalities
and his decision is socially optimal. In particular, he balks if
and only if his position at the queue is n∗

+ 1. All arriving
customers have the same expected utility,which is indepen-
dent of queue length. Therefore, the server can obtain all the
social welfare by charging the maximal price they are ready
to pay.

3. A priority pricing mechanism for achieving S∗ follows from
work on priority sales by Adiri and Yechiali [1] and Alper-
stein [4], who showed that by adequately pricing preemp-
tive priorities it is possible to induce threshold n∗ and leave
no customer surplus. An arriving customer buys the lowest
priority with no current customer, and balks if all n∗ prior-
ities have customers. The result is a LCFS-PR regime, cus-
tomer behavior is socially optimal, and the server’s profit is
S∗. An advantage of thismodel is that, although the outcome
is LCFS-PR among customers obtaining service, customers
may not feel it is unfair because they choose the type of
priority to purchase. Also, those paying eventually obtain
service and those balking do not incur any costs, whereas
under the LCFS-PR regime with a single price the waiting
costs of reneging customers are not refunded. Details can be
found in Erlichman and Hassin [14].

4. We suggest a new high–low announcementsmechanism that
guarantees profit S∗. In the FCFS observable model with
threshold n∗, the average customer utility for a customer
arriving when n < n∗, is R − CW<n∗ , where W<n∗ is the
(conditional) expected waiting time of a joining customer.
Therefore, S∗

= Λ Pr(n < n∗)(R − CW<n∗ ). According to
our new mechanism, the server charges a fixed price p =

R − CW<n∗ and informs the customers at any point of time
whether or not n < n∗. Consequently, all customers join
when n < n∗ (we assume that indifferent customers join,
otherwise a slightly lower price than p will induce joining
of all customers who arrive when n < n∗). Clearly, this
guarantees the server’s profit rate to be S∗.

Note that any price greater than p can be imposed, or
customers can simply be rejected, when n > n∗, without
affecting the outcome.

Tables 1 and 2 compare the fourmechanisms from the points of
view of the customers and server, respectively.

Our proposed solution has advantages over the other solutions.
It has a single price and avoids high switching costs, as is conve-
nient for the server, while being fair for the customers and serves
in FCFS order.

4. A high–low system

We consider anM/M/1 queueing systemwith a potential arrival
rate Λ of risk-neutral customers, service rate µ, waiting cost rate
C , and service value R. N is an exogenous constant. The queue
manager sets admission fee pL if the queue length is smaller than
N (i.e., the state is L) and pH otherwise (the state is H). An arriving
customer is informed whether the state is L or H , and decides
whether to join the queue or balk.

Note that both extreme cases, N = 0 and N → ∞, lead to the
unobservable version of Naor’s model, as in [13].
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