
Operations Research Letters 45 (2017) 442–447

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Approximate policy iteration for dynamic resource-constrained
project scheduling
Mahshid Salemi Parizi a, Yasin Gocgun b, Archis Ghate a,*
a Industrial & Systems Engineering, University of Washington, Seattle, USA
b Department of Industrial Engineering, Altinbas University, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 15 January 2017
Received in revised form 14 June 2017
Accepted 14 June 2017
Available online 11 July 2017

Keywords:
Markov decision processes
Approximate dynamic programming
Queueing

a b s t r a c t

We study non-preemptive scheduling problems where heterogeneous projects stochastically arrive over
time. The projects include precedence-constrained tasks that require multiple resources. Incomplete
projects are held in queues. When a queue is full, an arriving project must be rejected. The goal is to
choosewhich tasks to start in each time-slot tomaximize the infinite-horizon discounted expected profit.
We provide a weakly coupled Markov decision process (MDP) formulation and apply a simulation-based
approximate policy iteration method. Extensive numerical results are presented.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and literature review

Mathematical studies on project scheduling date at least as far
back as the Critical Path Method (CPM) and the Program Eval-
uation and Review Technique (PERT) [14]. Both CPM and PERT
assume unlimited resource availability. Early work on resource-
constrained project scheduling problems (RCPSPs) can perhaps
be traced to the zero–one programming model in [16]. That
paper studied a discrete-time problem and incorporated mul-
tiple projects with precedence-constrained tasks and multiple
resources. Task durations were deterministic and new project
arrivals were not allowed. The binary decision variables corre-
sponded to whether or not a task is completed in a certain period.
Such static-deterministic RCPSPs started receiving more attention
in the 1980s. For instance, Blazewicz et al. [4] showed in 1983
that such RCPSPs are NP-hard. More recent surveys of static-
deterministic RCPSPs are available in Herroelen et al. [10], and in
Hartmann and Briskorn [9]. Hartmann and Briskorn stated that
most of the literature available at the time focused on rather
simplistic models and ignored two features that are important in
practice: stochastic task durations and dynamic arrivals of new
projects. One of the appropriate models for incorporating such
stochastic and dynamic components is Markov decision processes
(MDPs). We therefore review literature that uses MDPs to model
project scheduling problems next.

Choi et al. [5] formulated an infinite-horizon, discrete-time
MDP model for RCPSPs with stochastic task durations, uncertain

* Correspondence to: Industrial & Systems Engineering, BOX 352650, University
of Washington, Seattle, WA, 98195, USA.

E-mail address: archis@uw.edu (A. Ghate).

task outcomes (success or failure), and uncertain costs. In their
problem setting, only one resource was needed to perform one
task. They focused on linear activity-on-node (that is, precedence
constrained) networks and did not model dynamic arrivals of
new projects. The state in their MDP included the status of each
project, that is, which tasks are complete and which are ongoing;
information about whether or not the latest task in each project
was a success was also stored in the state; in addition, the state
included the number of time-slots for which a resource has been
used for the currently ongoing task. Since their activity-on-node
network was linear, at most one task in a project can be started
in one time-period. The decisions in their MDP were therefore
binary, representing whether or not to start a particular task in
a particular project. The resulting MDP still suffered from the
curse of dimensionality. A simulation-based approximate dynamic
programming (ADP) algorithm was applied.

Choi et al. [6] extended the aboveMDP by allowing new project
arrivals from a pre-determined group of projects. Consequently,
their state included an additional variable to represent the realized
arrival time of each new project. The decisions were identical
to those in Choi et al. [5]. They implemented a variation of the
Q -learning algorithm [17] on the resulting large-scale MDP.

Melchiors [11] formulated an infinite-horizon, continuous-
time MDP model for scheduling dynamically arriving projects
with stochastic task durations. Project arrivals followed a Pois-
son process. Their model was not restricted to linear activity-on-
node networks. However, as in the above two papers by Choi
et al., Melchiors also made the simplifying assumption that each
task needed only one resource. The state in this MDP included

http://dx.doi.org/10.1016/j.orl.2017.06.002
0167-6377/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2017.06.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.06.002&domain=pdf
mailto:archis@uw.edu
http://dx.doi.org/10.1016/j.orl.2017.06.002


M. Salemi Parizi et al. / Operations Research Letters 45 (2017) 442–447 443

information about waiting and ongoing tasks in each project.
The decision-maker chose the tasks to work on in each period.
A simulation-based ADP algorithm that employed value-function
approximation was implemented.

We study infinite-horizon, discrete-time RCPSPs with dynamic
arrivals of new heterogeneous projects. We allow for arbitrary
arrival distributions and any (not necessarily linear) activity-on-
node networks. One task may simultaneously require multiple
resources. These features generalize the corresponding compo-
nents of the problems studied in Choi et al. [5,6] and in Mel-
chiors [11]. We focus on deterministic task durations and pro-
vide an MDP formulation of such dynamic resource constrained
project scheduling problems (DRCPSPs). It turns out that this MDP
is weakly coupled [1]. That is, the immediate expected profits
are additively separable over project-types and transition prob-
abilities are multiplicatively separable. Decisions about distinct
project-types are only linked by resource-availability constraints.
Exact solution of this MDP is intractable owing to the curse of
dimensionality. Standard approaches for approximate solution of
weakly coupled MDPs include Lagrangian relaxation and approx-
imate linear programming [1,8,12]. Unfortunately, owing to the
complicated state-evolution process in our MDP, such mathemat-
ical programming-based methods are computationally difficult to
implement. We therefore apply a simulation-based approximate
policy iteration algorithm [3,15] to thisMDP. Thismethod employs
a value-function approximation whose parameters are tuned via
simulation using least-squares fitting.

2. Problem statement

Consider a projection scheduling problem over time-stages t =

1, 2, . . .with the following notation.

1. I = {1, 2, . . . , I} is the index set of project types.
2. Up to Di new projects of type i ∈ I may arrive during

one time-period. Let pi(m) denote the probability that m ∈

{0, 1, . . . ,Di
} new projects of type i ∈ I arrive during one

time-period.
3. For each project of type i ∈ I, N i

= {1, . . . ,N i
} de-

notes the finite set of tasks that need to be accomplished
in order to complete the project. Tasks are performed in a
non-preemptive manner; i.e., once started, a task cannot be
interrupted until it is complete.

4. For each task n ∈ N i,Mi
n ⊂ N i denotes the set of tasks that

must be completed before starting task n. This set is called
the set of predecessors of task n in project-type i.

5. Task durations are deterministic. Task n ∈ N i takes∆i
n time-

periods to complete.
6. J = {1, . . . , J} is the set of resources. Bj is the integer

quantity of resource j ∈ J available in each time-period.
Task n ∈ N i requires an integer amount bijn ≥ 0 of resource
j ∈ J .

7. By the beginning of any time-period, a project that arrived
earlier may be completed, may be incomplete or may be
waiting inception. The projects that have not been com-
pleted, i.e., the ones that are incomplete orwaiting inception
form a ‘‘queue’’. W i < ∞ denotes the queue capacity for
incomplete and waiting projects of type i.

8. The following rewards and costs are obtained or incurred.

• Projects of type i ∈ I that arrive when W i projects
of that type are in the queue are rejected incurring a
penalty cost Gi at the end of the time-period.

• A reward Ri is received on completing a project of type
i ∈ I at the end of a time-period.

• A cost c in per time-period is charged at the end of that
timeperiod for performing task n in project-type i ∈ I.

• An incomplete stalled project (no ongoing tasks) of
type i ∈ I incurs a cost Q i per period. This cost is
charged at the end of the time-period.

• A holding cost H i per project of type i ∈ I is incurred
in each time-period where such a project is waiting
inception. This cost is incurred at the beginning of the
time-period.

9. The goal is to maximize the total discounted expected profit
(rewards minus costs) over an infinite-horizon where the
per-period discount factor is 0 < α < 1.

An MDP model for this class of DRCPSPs is developed next.

3. A Markov decision process model

The MDP states are given by X = (X1, . . . , X I ), where matrix X i

stores information about all incomplete andwaiting type-iprojects
(i.e., projects in queue). The number of rows in X i equals the num-
ber of type-i projects in queue and hence cannot exceed W i. Let
rows(X i) denote the set of rows in X i. Recall that N i

= {1, . . . ,N i
}

is the set of tasks in type-i projects. Each row in X i is of length
N i. The entries X i

lk in the lth row and kth column of matrix X i are
defined as

X i
lk = −1 if task k ∈ N i

in the lth type i project in queue has not yet started;
X i
lk = ∆i

k if task k ∈ N i

in the lth type-i project in queue has been completed;
0 < X i

lk < ∆i
k if task k ∈ N i

in the lth type-i project has started but not complete.

When 0 < X i
lk < ∆i

k, X
i
lk denotes the number of time-periods since

the inception of task k. Let X i denote the set of all state matrices X i

that are feasible with respect to precedence constraints for type-i
projects. Also let X = X 1

× X 2
× · · · × X I . We define the set

Ci
l (X

i) = {k : 0 < X i
lk < ∆i

k} of tasks that have started but are
incomplete. Owing to our non-preemptive setting, tasks in Ci

l (X
i)

must be processed in the current period. The set of all feasible
states is then given by

X̄ =

{
X ∈ X :

I∑
i=1

∑
l∈rows(X i)

∑
k∈Ci

l (X
i)

bijk ≤ Bj, j ∈ J
}
. (1)

The vector A of action matrices in our MDP is written as A =

(A1, . . . , AI ). Here, Ai is a matrix of zeros and ones, equal in size to
X i, and indicates which tasks will be started next. Ai

lk = 1 implies
that we choose to begin task k in the lth type-i project in queue; Ai

lk
is zero if we do not begin task k in the lth type-i project in queue.
A feasible action must satisfy the logical restrictions

Ai
lk = 1 only if X i

lk = −1 and X i
ln = ∆i

n, ∀n ∈ Mi
k. (2)

This ensures that task k can be started only if it had not begun
or completed earlier and if all of its predecessors have been com-
pleted. The set of all such action matrices for state matrix X i is
denoted by U i(X i). Also let U(X) = U1(X1)×U2(X2)× · · · ×U I (X I ).
Given the state–action pair (X i, Ai), the matrix X i

+ Ai provides
valuable information. In particular, we define the set of ongoing
tasks in the lth type-i project as V i

l (X
i, Ai) = {k : 0 ≤ X i

lk + Ai
lk <

∆i
k}. Note that Ci

l (X
i) ⊆ V i

l (X
i, Ai) for every Ai

∈ U i(X i). The
amount of resource j ∈ J consumed by all ongoing tasks from
type-i projects equals

∑
l∈rows(X i)

∑
k∈V i

l (X
i,Ai)b

ij
k and is denoted by

Bij
(
X i, Ai

)
. The set of all vectors of action matrices that are feasible



Download English Version:

https://daneshyari.com/en/article/5128373

Download Persian Version:

https://daneshyari.com/article/5128373

Daneshyari.com

https://daneshyari.com/en/article/5128373
https://daneshyari.com/article/5128373
https://daneshyari.com

