
Operations Research Letters 45 (2017) 452–455

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Greedy algorithms for the single-demand facility location problem
Sin-Shuen Cheung, David P. Williamson *
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14853, USA

a r t i c l e i n f o

Article history:
Received 21 September 2016
Received in revised form 7 July 2017
Accepted 8 July 2017
Available online 17 July 2017

Keywords:
Facility location
Approximation algorithm
Greedy algorithm

a b s t r a c t

In this note, we give greedy approximation algorithms for the single-demand facility location problem
inspired by the greedy algorithms for the min-knapsack problem originally given by Gens and Levner
(1979) and later analyzed by Csirik et al. (1991). The simplest algorithm is a 2-approximation algorithm
running inO(n log n) time; in general, we give a k+1

k -approximation algorithm running inO(nk log n) time.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The single-demand facility location (SDFL) problem is a well-
studied optimization problem. In this problem,we are given a set of
potential facilities F to be opened to serve a total demandofDunits.
Each facility i ∈ F has an opening cost fi ≥ 0, a per-unit shipping
cost ci ≥ 0, and a capacity limit ui > 0. The goal is to find a subset S
of facilities F to open and an assignment σ : S → ℜ≥0 of facilities
to demand that minimizes the total cost, such that the capacity of
each opened facility is respected and the total demand is assigned.
In particular, if we open a subset S ⊆ F and have assignment σ , we
need that σ (i) ≤ ui for each i ∈ S and

∑
i∈Sσ (i) = D; the goal is to

minimize
∑

i∈S(fi+ci ·σ (i)).Wewill use c(S, σ) ≡
∑

i∈S(fi+ci ·σ (i))
to denote the cost of a solution (S, σ). The problem can easily seen
to be NP-hard by a reduction from the knapsack problem (see, for
instance, Florian et al. [5]).

The single-demand facility location problem is the single-client
version of the more general capacitated facility location problem.
Although the single-demand facility location problem isNP-hard, it
has a fully polynomial-time approximation scheme (FPTAS) given
by Carr et al. [3]. A polynomial-time approximation scheme (PTAS)
is an algorithm which computes a (1 + ϵ)-approximate solution
within polynomial time for any fixed ϵ > 0. An FPTAS further
requires that the running time is polynomial in both the input
size and 1/ϵ. Carr et al. obtain a 2-approximation algorithm for
the problem by rounding the solution to an exponentially-sized
linear programming relaxation of the problemwith flow-cover in-
equalities. They show how to solve the relaxation via the ellipsoid
method. They obtain an FPTAS by using the multiplicative-weight

* Corresponding author.
E-mail addresses: sc2392@cornell.edu (S. Cheung),

davidpwilliamson@cornell.edu (D.P. Williamson).

algorithm of Garg and Könemann [6] in combination with a dy-
namic program to find a most violated constraint. Van Hoesel and
Wagelmans [10] give a direct dynamic programming algorithm
to obtain an FPTAS. Carnes and Shmoys [2] give a primal–dual
2-approximation algorithm for the problem; it creates a feasible
solution to the dual of the flow-cover-based linear programming
relaxation given by Carr et al., and uses this dual solution to infer a
good solution to the integer primal problem.

In this work, we give a simple greedy algorithm that yields
a 2-approximation algorithm for the single-demand facility loca-
tion problem; we extend this algorithm to a PTAS. Our greedy
algorithms are straightforward to understand, and follow the
techniques developed by Gens and Levner [7] and later analyzed
by Csirik et al. [4] for the minimum knapsack problem. Csirik
et al. show that the greedy algorithm of Gens and Levner is
a 2-approximation algorithm for min-knapsack, and then refine
the algorithm to obtain a 3/2-approximation algorithm. The min-
knapsack problem admits an FPTAS, via a straightforward reduc-
tion to the standard knapsack problem (see, for instance, Ibarra and
Kim [8] for an FPTAS for knapsack). Carnes and Shmoys [2] develop
a primal–dual 2-approximation algorithm formin-knapsack. Bien-
stock andMcClosky [1] prove that for any ϵ ∈ (0, 1) one can obtain
a (1 + ϵ)-approximate solution for the min-knapsack problem by
solving a polynomially-sized linear program.

2. Greedy algorithms for the min-knapsack problem

We begin by reviewing the min-knapsack problem, and the
greedy algorithm for it given by Gens and Levner [7]. The min-
knapsack problem is defined as follows. There are items indexed
by 1, . . . , n that can be put into a knapsack. Each item i has volume
ci > 0 and value ai ≥ 0, and there is a target value D. The
goal is to choose a subset F ⊆ {1, . . . , n} of items of minimum

http://dx.doi.org/10.1016/j.orl.2017.07.002
0167-6377/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2017.07.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.07.002&domain=pdf
mailto:sc2392@cornell.edu
mailto:davidpwilliamson@cornell.edu
http://dx.doi.org/10.1016/j.orl.2017.07.002

S. Cheung, D.P. Williamson / Operations Research Letters 45 (2017) 452–455 453

volume such that the total value of items in F is at least D. The
standard (max) knapsack problem has the same input except it has
a volume limit V rather than a target value D and the goal is to find
a subset F of items of maximum value such that the total volume
is at most V . The standard version is known to be NP-hard due to
Karp [9]. The min-knapsack problem can be shown to be NP-hard
via a straightforward reduction from the standard version.

We now review the Gens and Levner [7] greedy algorithm for
min-knapsack. First, sort items by non-increasing order of ratio
ai
ci

and redefine the indices by this ordering so that a1
c1
≥ · · · ≥

an
cn
. Now define sequences of small items and big items as follows.

Let k1 be the index such that
∑k1

i=1ai < D ≤
∑k1+1

i=1 ai and let
S1 := {1, . . . , k1}. Let k2 be the index larger than k1 such that∑

i∈S1
ai + ak2 < D and

∑k1
i=1ai + al ≥ D for any l : k1 < l < k2.

Define B1 := {ak1+1, . . . , ak2−1}. Let k3 be the index larger than k2
such that

∑
i∈S1

ai +
∑k3

i=k2
ai < D ≤

∑
i∈S1

ai +
∑k3+1

i=k2
ai. Define

S2 := {ak2 , . . . , ak3}, and so on.We can inductively define the small
item sets Sj and big items sets Bj so that Sj = {ak2(j−1) , . . . , ak2j−1}
and Bj = {ak2j−1+1, . . . , ak2j−1} for all j such that Sj or Bj is defined.
Then we have that∑
i∈∪lj=1Sj

ai + ar ≥ D

holds for any l and r ∈ Bl.
Let C be the set of solutions with the form ∪l

j=1Sj ∪ {r} for
r ∈ Bl. The greedy algorithm finds the minimum-cost solution
in C and returns it. Csirik et al. [4] show that this algorithm is a
2-approximation algorithm for the min-knapsack problem.

3. A greedy 2-approximation algorithm for the single-demand
facility location problem

In this section, we develop a greedy 2-approximation algorithm
for the single-demand facility location problem that is inspired by
themin-knapsack algorithmof Gens and Levner [7] and its analysis
by Csirik et al. [4].

3.1. Notation and concepts

Weuse the 3-tuple (fi, ci, ui) to denote a facility iwhose opening
cost, per unit connection cost, and available capacity are fi, ci and
ui respectively. We assume that fi, ci and ui are all nonnegative
real numbers for any facility i. An instance of the single-demand
facility location problem is denoted as SL({(fi, ci, ui)}i∈F ,D), where
{(fi, ci, ui)}i∈F is the set of available facilities and the positive real
number D is the demand; we define this notation since to obtain
our PTASwewill need to createmodified instances of the problem.
Define ρi =

fi+ciui
ui

. We reindex facilities so that ρ1 ≤ ρ2 ≤ · · ·

≤ ρn.
Now we define the notion of small facilities and big facilities as

in Csirik et al. [4].

Definition 1. Given the problem SL({(fi, ci, ui)}i∈F ,D), inductively
define the following indices and sets.

• Let S1 be the subset {1, . . . , k1} ⊆ F , where k1 is the index
such that

∑k1
i=1ui < D and

∑k1
i=1ui + uk1+1 ≥ D;

• Let B1 be the subset {k1 + 1, . . . , k2 − 1} ⊆ F , where k2 is
the index larger than k1 such that

∑
i∈S1

ui + ul ≥ D for all
l ∈ {k1 + 1, . . . , k2 − 1} and

∑
i∈S1

ui + uk2 < D.

In general, we have that

• Sl is the subset {k2l−2, . . . , k2l−1} ⊆ F , where k2l−1 is the index
larger than k2l−2 such that

∑
i∈∪l−1r=1Sr

ui +
∑k2l−1

i=k2l−2
ui < D and∑

i∈∪l−1r=1Sr
ui + uk2l−1+1 ≥ D;

• Bl is the subset {k2l−1 + 1, . . . , k2l − 1} ⊆ F , where k2l is the
index larger than k2l−1 such that

∑
i∈∪lr=1Sr

ui + us ≥ D for all
s ∈ {k2l−1 + 1, . . . , k2l − 1} and

∑
i∈∪l−1r=1Sr

ui + uk2l < D.

Let q be the index such that |F | ∈ Sq or |F | ∈ Bq. Then we say
{Sl}

q
l=1 and {Bl}

q
l=1 (where Bq is allowed to be an empty set) are

the small sets and big sets respectively for the problem instance
SL({(fi, ci, ui)}i∈F ,D). We call the facilities contained in big sets and
small sets big facilities and small facilities respectively.

The small facility sets {Sl}
q
l=1 and big facility sets {Bl}

q
l=1 allow us

to define candidate solutions to the single-demand facility location
problem as follows.

Definition 2. Given problem instance SL({(fi, ci, ui)}i∈F ,D) and its
small and big facility sets {Sl}

q
l=1 and {Bl}

q
l=1, define a collection C1

of pairs (S, σ) for S = ∪q′
l=1Sl ∪ {r} for all q

′
= 1, . . . , q and r ∈ Bq′ ;

for each such S, define the corresponding σ such that σ (i) = ui for
each small facility i ∈ S, and σ (r) is the remaining demand, which
is assigned to big facility r (that is, σ (r) = D−

∑
i∈S−{r}ui).

To be specific, for (S, σ) ∈ C1, the set S consists of the first
q′ small sets ∪q′

l=1Sl and one big facility r ∈ Bq′ for some q′. By
the definition of the small and big facility sets given above, the
assignment σ given is always possible.

3.2. The greedy algorithm for single-demand facility location

By choosing the minimum-cost solution over all the candi-
date solutions in C1, we will obtain a 2-approximate solution for
the single-demand facility location problem. For a given instance
SL({(fi, ci, ui)}i∈F ,D), let us denote the algorithm that constructs
the corresponding candidate set C1 and chooses theminimum-cost
solution from C1 as Algorithm G1(SL({(fi, ci, ui)}i∈F ,D)).

Theorem 3. The algorithm G1(SL({(fi, ci, ui)}i∈F ,D)) gives a 2-
approximate solution to SL({(fi, ci, ui)}i∈F ,D). The algorithm runs in
time O(n log n), where n = |F |.

Proof. Let (S∗, σ ∗) be an optimal solution to the problem instance
SL({(fi, ci, ui)}i∈F ,D). Notice that there must be at least one big
facility in S∗ in order for it to be a feasible solution. Let p be the
big facility of least index in S∗. Consider the solution (Ŝ, σ̂), where
Ŝ consists of all small facilities of index less than p, plus the big
facility p, and σ̂ is such that σ̂ (i) = ui for all small facilities in Ŝ,
and σ̂ (p) = D −

∑
i∈S−{p}ui is all remaining demand. Clearly this

solution (Ŝ, σ̂) is in the candidate set C1 considered by Algorithm
G1. We only need to show that this solution is within a factor of
two in cost of (S∗, σ ∗). In particular, we will prove that

c(Ŝ, σ̂) ≤ c(S∗, σ ∗)+ fp ≤ 2 · c(S∗, σ ∗),

which will prove the result.
Recall that ρi =

fi+ciui
ui
=

fi
ui
+ ci, and that facilities are indexed

in order of nondecreasing ρi. Since p is the big facility of lowest
index in S∗, and (Ŝ, σ̂) assigns all demand not assigned to p to small
facilities of index smaller than p, a simple interchange argument
shows that∑
i∈Ŝ

ρi · σ̂ (i) ≤
∑
i∈S∗

ρi · σ
∗(i). (1)

Because for any small facility i ∈ Ŝ, σ̂ (i) = ui, we have that
ρi · σ̂ (i) = fi + ci · σ̂ (i). Also, for facility p, cp · σ̂ (p) ≤ ρp · σ̂ (p).

Download English Version:

https://daneshyari.com/en/article/5128375

Download Persian Version:

https://daneshyari.com/article/5128375

Daneshyari.com

https://daneshyari.com/en/article/5128375
https://daneshyari.com/article/5128375
https://daneshyari.com

