Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Greedy algorithms for the single-demand facility location problem

School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14853, USA

Sin-Shuen Cheung, David P. Williamson*

ARTICLE INFO

ABSTRACT

Article history: Received 21 September 2016 Received in revised form 7 July 2017 Accepted 8 July 2017 Available online 17 July 2017

Keywords: Facility location Approximation algorithm Greedy algorithm

1. Introduction

The single-demand facility location (SDFL) problem is a wellstudied optimization problem. In this problem, we are given a set of potential facilities *F* to be opened to serve a total demand of *D* units. Each facility $i \in F$ has an opening $\cot f_i \ge 0$, a per-unit shipping $\cot c_i \ge 0$, and a capacity limit $u_i > 0$. The goal is to find a subset *S* of facilities *F* to open and an assignment $\sigma : S \to \Re^{\ge 0}$ of facilities to demand that minimizes the total cost, such that the capacity of each opened facility is respected and the total demand is assigned. In particular, if we open a subset $S \subseteq F$ and have assignment σ , we need that $\sigma(i) \le u_i$ for each $i \in S$ and $\sum_{i \in S} \sigma(i) = D$; the goal is to minimize $\sum_{i \in S} (f_i + c_i \cdot \sigma(i))$. We will use $c(S, \sigma) \equiv \sum_{i \in S} (f_i + c_i \cdot \sigma(i))$ to denote the cost of a solution (S, σ) . The problem can easily seen to be NP-hard by a reduction from the knapsack problem (see, for instance, Florian et al. [5]).

The single-demand facility location problem is the single-client version of the more general capacitated facility location problem. Although the single-demand facility location problem is NP-hard, it has a fully polynomial-time approximation scheme (FPTAS) given by Carr et al. [3]. A polynomial-time approximation scheme (PTAS) is an algorithm which computes a $(1 + \epsilon)$ -approximate solution within polynomial time for any fixed $\epsilon > 0$. An FPTAS further requires that the running time is polynomial in both the input size and $1/\epsilon$. Carr et al. obtain a 2-approximation algorithm for the problem by rounding the solution to an exponentially-sized linear programming relaxation of the problem with flow-cover inequalities. They show how to solve the relaxation via the ellipsoid method. They obtain an FPTAS by using the multiplicative-weight

* Corresponding author.

E-mail addresses: sc2392@cornell.edu (S. Cheung), davidpwilliamson@cornell.edu (D.P. Williamson).

http://dx.doi.org/10.1016/j.orl.2017.07.002 0167-6377/© 2017 Elsevier B.V. All rights reserved. In this note, we give greedy approximation algorithms for the single-demand facility location problem inspired by the greedy algorithms for the min-knapsack problem originally given by Gens and Levner (1979) and later analyzed by Csirik et al. (1991). The simplest algorithm is a 2-approximation algorithm running in $O(n \log n)$ time; in general, we give a $\frac{k+1}{k}$ -approximation algorithm running in $O(n^k \log n)$ time. © 2017 Elsevier B.V. All rights reserved.

algorithm of Garg and Könemann [6] in combination with a dynamic program to find a most violated constraint. Van Hoesel and Wagelmans [10] give a direct dynamic programming algorithm to obtain an FPTAS. Carnes and Shmoys [2] give a primal-dual 2-approximation algorithm for the problem; it creates a feasible solution to the dual of the flow-cover-based linear programming relaxation given by Carr et al., and uses this dual solution to infer a good solution to the integer primal problem.

In this work, we give a simple greedy algorithm that yields a 2-approximation algorithm for the single-demand facility location problem; we extend this algorithm to a PTAS. Our greedy algorithms are straightforward to understand, and follow the techniques developed by Gens and Levner [7] and later analyzed by Csirik et al. [4] for the minimum knapsack problem. Csirik et al. show that the greedy algorithm of Gens and Levner is a 2-approximation algorithm for min-knapsack, and then refine the algorithm to obtain a 3/2-approximation algorithm. The minknapsack problem admits an FPTAS, via a straightforward reduction to the standard knapsack problem (see, for instance, Ibarra and Kim [8] for an FPTAS for knapsack). Carnes and Shmoys [2] develop a primal-dual 2-approximation algorithm for min-knapsack. Bienstock and McClosky [1] prove that for any $\epsilon \in (0, 1)$ one can obtain a $(1 + \epsilon)$ -approximate solution for the min-knapsack problem by solving a polynomially-sized linear program.

2. Greedy algorithms for the min-knapsack problem

We begin by reviewing the min-knapsack problem, and the greedy algorithm for it given by Gens and Levner [7]. The minknapsack problem is defined as follows. There are items indexed by $1, \ldots, n$ that can be put into a knapsack. Each item *i* has volume $c_i > 0$ and value $a_i \ge 0$, and there is a target value *D*. The goal is to choose a subset $F \subseteq \{1, \ldots, n\}$ of items of minimum volume such that the total value of items in *F* is at least *D*. The standard (max) knapsack problem has the same input except it has a volume limit V rather than a target value D and the goal is to find a subset F of items of maximum value such that the total volume is at most V. The standard version is known to be NP-hard due to Karp [9]. The min-knapsack problem can be shown to be NP-hard via a straightforward reduction from the standard version.

We now review the Gens and Levner [7] greedy algorithm for min-knapsack. First, sort items by non-increasing order of ratio $\frac{a_i}{c_i}$ and redefine the indices by this ordering so that $\frac{a_1}{c_1} \ge \cdots \ge \frac{a_n}{c_n}$. Now define sequences of *small items* and *big items* as follows. $\overline{c_n}$. Now define sequences of *small items* and *big items* as follows. Let k_1 be the index such that $\sum_{i=1}^{k_1} a_i < D \leq \sum_{i=1}^{k_1+1} a_i$ and let $S_1 := \{1, \ldots, k_1\}$. Let k_2 be the index larger than k_1 such that $\sum_{i \in S_1} a_i + a_{k_2} < D$ and $\sum_{i=1}^{k_1} a_i + a_l \geq D$ for any $l : k_1 < l < k_2$. Define $B_1 := \{a_{k_1+1}, \ldots, a_{k_2-1}\}$. Let k_3 be the index larger than k_2 such that $\sum_{i \in S_1} a_i + \sum_{i=k_2}^{k_3} a_i < D \leq \sum_{i \in S_1} a_i + \sum_{i=k_2}^{k_3+1} a_i$. Define $S_2 := \{a_{k_2}, \ldots, a_{k_3}\}$, and so on. We can inductively define the small item sets S_i and big items sets B_i so that $S_1 = \{a_{k_1}, \ldots, a_{k_3}\}$. item sets S_j and big items sets B_j so that $S_j = \{a_{k_{2(j-1)}}, \ldots, a_{k_{2j-1}}\}$ and $B_j = \{a_{k_{2j-1}+1}, \ldots, a_{k_{2j}-1}\}$ for all j such that S_j or B_j is defined. Then we have that

$$\sum_{i \in \bigcup_{i=1}^l S_j} a_i + a_r \ge D$$

holds for any *l* and $r \in B_l$.

Let C be the set of solutions with the form $\bigcup_{i=1}^{l} S_i \cup \{r\}$ for $r \in B_{l}$. The greedy algorithm finds the minimum-cost solution in C and returns it. Csirik et al. [4] show that this algorithm is a 2-approximation algorithm for the min-knapsack problem.

3. A greedy 2-approximation algorithm for the single-demand facility location problem

In this section, we develop a greedy 2-approximation algorithm for the single-demand facility location problem that is inspired by the min-knapsack algorithm of Gens and Levner [7] and its analysis by Csirik et al. [4].

3.1. Notation and concepts

We use the 3-tuple (f_i, c_i, u_i) to denote a facility *i* whose opening cost, per unit connection cost, and available capacity are f_i , c_i and u_i respectively. We assume that f_i , c_i and u_i are all nonnegative real numbers for any facility *i*. An instance of the single-demand facility location problem is denoted as $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$, where $\{(f_i, c_i, u_i)\}_{i \in F}$ is the set of available facilities and the positive real number *D* is the demand; we define this notation since to obtain our PTAS we will need to create modified instances of the problem. Define $\rho_i = \frac{f_i + c_i u_i}{u_i}$. We reindex facilities so that $\rho_1 \le \rho_2 \le \cdots$ $\leq \rho_n$.

Now we define the notion of small facilities and big facilities as in Csirik et al. [4].

Definition 1. Given the problem $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$, inductively define the following indices and sets.

- Let S₁ be the subset {1,..., k₁} ⊆ F, where k₁ is the index such that ∑_{i=1}^{k₁} u_i < D and ∑_{i=1}^{k₁} u_i + u_{k₁+1} ≥ D;
 Let B₁ be the subset {k₁ + 1,..., k₂ 1} ⊆ F, where k₂ is the index larger than k₁ such that ∑_{i∈S1}ⁱ u_i + u_l ≥ D for all l ∈ {k₁ + 1,..., k₂ 1} and ∑_{i∈S1}ⁱ u_i + u_{k₂} < D.

In general, we have that

• S_l is the subset $\{k_{2l-2}, \ldots, k_{2l-1}\} \subseteq F$, where k_{2l-1} is the index larger than k_{2l-2} such that $\sum_{i \in \bigcup_{r=1}^{l-1} S_r} u_i + \sum_{i=k_{2l-2}}^{k_{2l-1}} u_i < D$ and $\sum_{i \in \bigcup_{r=1}^{l-1} S_r} u_i + u_{k_{2l-1}+1} \ge D$;

• B_l is the subset $\{k_{2l-1} + 1, ..., k_{2l} - 1\} \subseteq F$, where k_{2l} is the index larger than k_{2l-1} such that $\sum_{i \in \bigcup_{r=1}^l S_r} u_i + u_s \ge D$ for all $s \in \{k_{2l-1}+1, \ldots, k_{2l}-1\}$ and $\sum_{i \in \bigcup_{r=1}^{l-1} S_r} u_i + u_{k_{2l}} < D.$

Let q be the index such that $|F| \in S_q$ or $|F| \in B_q$. Then we say $\{S_l\}_{l=1}^q$ and $\{B_l\}_{l=1}^q$ (where B_q is allowed to be an empty set) are the small sets and big sets respectively for the problem instance SL({ (f_i, c_i, u_i) }_{*i* \in F}, *D*). We call the facilities contained in big sets and small sets big facilities and small facilities respectively.

The small facility sets $\{S_l\}_{l=1}^q$ and big facility sets $\{B_l\}_{l=1}^q$ allow us to define candidate solutions to the single-demand facility location problem as follows.

Definition 2. Given problem instance $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$ and its small and big facility sets $\{S_l\}_{l=1}^q$ and $\{B_l\}_{l=1}^q$, define a collection C_1 of pairs (S, σ) for $S = \bigcup_{l=1}^{q'} S_l \cup \{r\}$ for all $q' = 1, \ldots, q$ and $r \in B_{q'}$; for each such *S*, define the corresponding σ such that $\sigma(i) = u_i$ for each small facility $i \in S$, and $\sigma(r)$ is the remaining demand, which is assigned to big facility *r* (that is, $\sigma(r) = D - \sum_{i \in S - \{r\}} u_i$).

To be specific, for $(S, \sigma) \in C_1$, the set S consists of the first q' small sets $\bigcup_{l=1}^{q'} S_l$ and one big facility $r \in B_{q'}$ for some q'. By the definition of the small and big facility sets given above, the assignment σ given is always possible.

3.2. The greedy algorithm for single-demand facility location

By choosing the minimum-cost solution over all the candidate solutions in C_1 , we will obtain a 2-approximate solution for the single-demand facility location problem. For a given instance $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$, let us denote the algorithm that constructs the corresponding candidate set C_1 and chooses the minimum-cost solution from C_1 as Algorithm $G_1(SL(\{(f_i, c_i, u_i)\}_{i \in F}, D))$.

Theorem 3. The algorithm $G_1(SL(\{(f_i, c_i, u_i)\}_{i \in F}, D))$ gives a 2approximate solution to $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$. The algorithm runs in time $O(n \log n)$, where n = |F|.

Proof. Let (S^*, σ^*) be an optimal solution to the problem instance $SL(\{(f_i, c_i, u_i)\}_{i \in F}, D)$. Notice that there must be at least one big facility in S* in order for it to be a feasible solution. Let p be the big facility of least index in S^{*}. Consider the solution $(\hat{S}, \hat{\sigma})$, where \hat{S} consists of all small facilities of index less than p, plus the big facility *p*, and $\hat{\sigma}$ is such that $\hat{\sigma}(i) = u_i$ for all small facilities in *S*, and $\hat{\sigma}(p) = D - \sum_{i \in S - \{p\}} u_i$ is all remaining demand. Clearly this solution $(\hat{S}, \hat{\sigma})$ is in the candidate set C_1 considered by Algorithm G_1 . We only need to show that this solution is within a factor of two in cost of (S^*, σ^*) . In particular, we will prove that

$$c(S, \hat{\sigma}) \leq c(S^*, \sigma^*) + f_p \leq 2 \cdot c(S^*, \sigma^*),$$

which will prove the result.

Recall that $\rho_i = \frac{f_i + c_i u_i}{u_i} = \frac{f_i}{u_i} + c_i$, and that facilities are indexed in order of nondecreasing ρ_i . Since *p* is the big facility of lowest index in S^{*}, and $(\hat{S}, \hat{\sigma})$ assigns all demand not assigned to p to small facilities of index smaller than p, a simple interchange argument shows that

$$\sum_{i\in\hat{S}}\rho_i\cdot\hat{\sigma}(i)\leq\sum_{i\in S^*}\rho_i\cdot\sigma^*(i).$$
(1)

Because for any small facility $i \in \hat{S}$, $\hat{\sigma}(i) = u_i$, we have that $\rho_i \cdot \hat{\sigma}(i) = f_i + c_i \cdot \hat{\sigma}(i)$. Also, for facility $p, c_p \cdot \hat{\sigma}(p) \leq \rho_p \cdot \hat{\sigma}(p)$.

Download English Version:

https://daneshyari.com/en/article/5128375

Download Persian Version:

https://daneshyari.com/article/5128375

Daneshyari.com