Operations Research Letters 45 (2017) 452-455

Contents lists available at ScienceDirect Operations

Research
_Letters

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Greedy algorithms for the single-demand facility location problem

Sin-Shuen Cheung, David P. Williamson *
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14853, USA

P
@ CrossMark

ARTICLE INFO ABSTRACT

Article history:
Received 21 September 2016
Received in revised form 7 July 2017

In this note, we give greedy approximation algorithms for the single-demand facility location problem
inspired by the greedy algorithms for the min-knapsack problem originally given by Gens and Levner
(1979) and later analyzed by Csirik et al. (1991). The simplest algorithm is a 2-approximation algorithm

Accepted 8 July 2017
Available online 17 July 2017

Keywords:

Facility location
Approximation algorithm
Greedy algorithm

running in O(n log n) time; in general, we give a

"zl -approximation algorithm running in O(n* log n) time.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The single-demand facility location (SDFL) problem is a well-
studied optimization problem. In this problem, we are given a set of
potential facilities F to be opened to serve a total demand of D units.
Each facility i € F has an opening cost f; > 0, a per-unit shipping
cost ¢; > 0,and a capacity limit u; > 0. The goal is to find a subset S
of facilities F to open and an assignment o : S — %= of facilities
to demand that minimizes the total cost, such that the capacity of
each opened facility is respected and the total demand is assigned.
In particular, if we open a subset S C F and have assignment o, we
need that o (i) < u; foreachi € Sand), (o (i) = D; the goal is to
minimize), (fi+c¢i-o(i)). Wewillusec(S, o) = Y, s(fi+ci-o (i)
to denote the cost of a solution (S, o). The problem can easily seen
to be NP-hard by a reduction from the knapsack problem (see, for
instance, Florian et al. [5]).

The single-demand facility location problem is the single-client
version of the more general capacitated facility location problem.
Although the single-demand facility location problem is NP-hard, it
has a fully polynomial-time approximation scheme (FPTAS) given
by Carr et al. [3]. A polynomial-time approximation scheme (PTAS)
is an algorithm which computes a (1 + €)-approximate solution
within polynomial time for any fixed ¢ > 0. An FPTAS further
requires that the running time is polynomial in both the input
size and 1/e. Carr et al. obtain a 2-approximation algorithm for
the problem by rounding the solution to an exponentially-sized
linear programming relaxation of the problem with flow-cover in-
equalities. They show how to solve the relaxation via the ellipsoid
method. They obtain an FPTAS by using the multiplicative-weight

* Corresponding author.
E-mail addresses: sc2392@cornell.edu (S. Cheung),
davidpwilliamson@cornell.edu (D.P. Williamson).

http://dx.doi.org/10.1016/j.0rl.2017.07.002
0167-6377/© 2017 Elsevier B.V. All rights reserved.

algorithm of Garg and Kénemann [6] in combination with a dy-
namic program to find a most violated constraint. Van Hoesel and
Wagelmans [10] give a direct dynamic programming algorithm
to obtain an FPTAS. Carnes and Shmoys [2] give a primal-dual
2-approximation algorithm for the problem; it creates a feasible
solution to the dual of the flow-cover-based linear programming
relaxation given by Carr et al., and uses this dual solution to infer a
good solution to the integer primal problem.

In this work, we give a simple greedy algorithm that yields
a 2-approximation algorithm for the single-demand facility loca-
tion problem; we extend this algorithm to a PTAS. Our greedy
algorithms are straightforward to understand, and follow the
techniques developed by Gens and Levner [7] and later analyzed
by Csirik et al. [4] for the minimum knapsack problem. Csirik
et al. show that the greedy algorithm of Gens and Levner is
a 2-approximation algorithm for min-knapsack, and then refine
the algorithm to obtain a 3/2-approximation algorithm. The min-
knapsack problem admits an FPTAS, via a straightforward reduc-
tion to the standard knapsack problem (see, for instance, Ibarra and
Kim [8] for an FPTAS for knapsack). Carnes and Shmoys [2] develop
a primal-dual 2-approximation algorithm for min-knapsack. Bien-
stock and McClosky [1] prove that for any € € (0, 1) one can obtain
a (1 + €)-approximate solution for the min-knapsack problem by
solving a polynomially-sized linear program.

2. Greedy algorithms for the min-knapsack problem
We begin by reviewing the min-knapsack problem, and the

greedy algorithm for it given by Gens and Levner [7]. The min-
knapsack problem is defined as follows. There are items indexed

by 1, ..., nthat can be put into a knapsack. Each item i has volume
¢; > 0 and value aq; > 0, and there is a target value D. The
goal is to choose a subset F C {1, ..., n} of items of minimum

http://dx.doi.org/10.1016/j.orl.2017.07.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.07.002&domain=pdf
mailto:sc2392@cornell.edu
mailto:davidpwilliamson@cornell.edu
http://dx.doi.org/10.1016/j.orl.2017.07.002

S. Cheung, D.P. Williamson / Operations Research Letters 45 (2017) 452-455 453

volume such that the total value of items in F is at least D. The
standard (max) knapsack problem has the same input except it has
avolume limit V rather than a target value D and the goal is to find
a subset F of items of maximum value such that the total volume
is at most V. The standard version is known to be NP-hard due to
Karp [9]. The min-knapsack problem can be shown to be NP-hard
via a straightforward reduction from the standard version.

We now review the Gens and Levner [7] greedy algorithm for
min-knapsack. First, sort items by non-increasing order of ratio
”' and redefine the indices by this ordering so that % G ==

‘1" . Now define sequences of small items and big items as follows.

Let kq be the mdex such that ¥ a; < D < Y ¥1g; and let

= {1,...,ki}. Let ky be the index larger than k; such that
Zlesla, —l—ak2 < Dand Zl 1a+a >Dforanyl: ky <1 < k.
Define By := {ax,+1, ..., Gk,—1}. Let k3 be the index larger than k,

k .

such that } ;¢ a; + Z 2l <D < Y0+ Zfz;al Define
Sy = {ay,, .. ak3} and so on. We can 1nduct1vely define the small
item sets S; and big items sets Bj so that S = {ak,;), ..., Gk, ,}
and B; = {akzl T+ e akzj_l} for all j such that S; or B; is deﬁned.
Then we have that

Z ai+a >D

| .
'EUJ‘:]SJ

holds for any land r € B,.

Let C be the set of solutions with the form Ul 1S; U {r} for
r € B, The greedy algorithm finds the mlnlmum -cost solution
in C and returns it. Csirik et al. [4] show that this algorithm is a
2-approximation algorithm for the min-knapsack problem.

3. A greedy 2-approximation algorithm for the single-demand
facility location problem

In this section, we develop a greedy 2-approximation algorithm
for the single-demand facility location problem that is inspired by
the min-knapsack algorithm of Gens and Levner [7] and its analysis
by Csirik et al. [4].

3.1. Notation and concepts

We use the 3-tuple (f;, ¢;, u;) to denote a facility i whose opening
cost, per unit connection cost, and available capacity are f;, ¢; and
u; respectively. We assume that f;, ¢; and u; are all nonnegative
real numbers for any facility i. An instance of the single-demand
facility location problem is denoted as SL({(f;, ¢i, U;)}icr, D), where
{(fi, ci, u;)}ier is the set of available facilities and the positive real
number D is the demand; we define this notation since to obtain
our PTAS we will need to create modified instances of the problem.
Define p; = f'“’”‘ . We reindex facilities so that p; < p < ---
= Pn-

Now we define the notion of small facilities and big facilities as
in Csirik et al. [4].

Definition 1. Given the problem SL({(f;, ¢i, u;)}icF,
define the following indices and sets.

D), inductively

e Let S; be the subset {1, . k1} C F, where k; is the index
such that Y1 u; < D and Zl Ui + U 41 = D

e Let By be the subset {k; + 1,...,k; — 1} C F, where k; is
the index larger than k; such that Ziesl u; + u; > D for all
lef{ki+1,...,kp —1}and >, uj +uy, <D.

In general, we have that

ieSy

e Sjisthesubset{ky_», ..., ky_1} C F,where kz, 1 isthe index
larger than ky;_, such that ZIEUI 15, Uit ZQ’ ' u; < Dand

i=ky—2
Zleu’rzllsrul + Uiy _+1 = D;

e Bjisthesubset {ky_1+ 1,..., ky — 1} C F, where ky, is the
index larger than ky;_; such that Z,EUI S Ui+ ug > D for all

se{ky_1+1,...,ky—1}and ZIGUI i, Ui + g, < D.

Let g be the index such that |F| € S, or [F| € Bg. Then we say
{S}{_, and {Bj}_, (where By is allowed to be an empty set) are
the small sets and big sets respectively for the problem instance
SL({(fi, ¢i, ui)}ier, D). We call the facilities contained in big sets and
small sets big facilities and small facilities respectively.

The small facility sets {S;};_, and big facility sets {B;}]_, allow us
to define candidate solutions to the single-demand facility location
problem as follows.

Definition 2. Given problem instance SL({(f;, ¢;, u;)}ier, D) and its
small and big facility sets {S;}{_, and {B;};_,, define a collection ¢;
of pairs (S, o) for S = Uf;]S, U{r}forallqg’ =1,...,qandr € By;
for each such S, define the corresponding o such that o (i) = u; for
each small facility i € S, and o(r) is the remaining demand, which
is assigned to big facility r (thatis, o(r) =D — Ziesf[r}uf)'

To be specifi/c, for (S,0) € Cy, the set S consists of the first
q' small sets ULS; and one big facility r € By for some ¢q'. By
the definition of the small and big facility sets given above, the
assignment o given is always possible.

3.2. The greedy algorithm for single-demand facility location

By choosing the minimum-cost solution over all the candi-
date solutions in C;, we will obtain a 2-approximate solution for
the single-demand facility location problem. For a given instance
SL({(fi, ci, ui)}ier, D), let us denote the algorithm that constructs
the corresponding candidate set C; and chooses the minimum-cost
solution from C; as Algorithm G1(SL({(f;, ¢i, U;)}ier, D)).

Theorem 3. The algorithm G{(SL({(f;, ci, u;
approximate solution to SL({(f;, ci, Ui)}icF,
time O(nlogn), where n = |F|.

Jier, D)) gives a 2-
D). The algorithm runs in

Proof. Let (S*, o*) be an optimal solution to the problem instance
SL({(fi, ci, ui)}icr, D). Notice that there must be at least one big
facility in S* in order for it to be a feasible solution. Let p be the
big facility of least index in S*. Consider the solution (S, o), where
S consists of all small facilities of index less than p, plus the big
facility p, and & is such that 6(i) = u; for all small facilities in S,
and 6(p) = D — Zies_{p}u, is all remaining demand. Clearly this

solution (§ , o) is in the candidate set C; considered by Algorithm
G1. We only need to show that this solution is within a factor of
two in cost of (§*, o*). In particular, we will prove that

(8,6) < c(S*, 0*) +f, <2-c(S*, o),

which will prove the result.

Recall that p; = f‘“’”’ fl + ¢;, and that facilities are indexed
in order of nondecreasmg ,o, 'Since p is the big facility of lowest
index in S*, and (S, o) assigns all demand not assigned to p to small
facilities of index smaller than p, a simple interchange argument

shows that
)<Y pi-o(i). (1)

E pi-o(i
. ies*

Because for any small facility i € S, o(i) = u;, we have that
pi - 6(i) = fi + ¢ - 6(i). Also, for facility p, ¢, - 6(p) < pp - 5(p).

Download English Version:

https://daneshyari.com/en/article/5128375

Download Persian Version:

https://daneshyari.com/article/5128375

Daneshyari.com

https://daneshyari.com/en/article/5128375
https://daneshyari.com/article/5128375
https://daneshyari.com

