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a b s t r a c t

The BMAP/SM/1 queue is the most general single-server queueing model which can be analysed an-
alytically. Problem of computation of stationary distributions of queue length is solved in the literature.
However, the problemof computation of themoments of these distributions is not enough addressed. This
problem is more complicated than its particular case when the service times are independent identically
distributed random variables due to reducibility of some involved matrices. In this communication, we
solve this problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The BMAP/G/1 queue as a single server system with infinite
buffer, Batch Markovian Arrival Process (BMAP) and independent
identically arbitrarily distributed service time is very important
for applications queueing model because the BMAP (see [2,11])
is an adequate mathematical model of bursty, correlated flows of
information inmodern telecommunication networks. Therefore its
analysis was very important theoretical task. Initially, this taskwas
solved long time ago by V. Ramaswami in [14] where essentially
the same arrival process as the BMAP was called as N process.
The BMAP/G/1 queue was then analysed in [11]. However, until
now analysis of such a system attracts attention of researchers, see,
e.g., very recent paper [17].

As it wasmentioned above, the BMAP/G/1 typemodel assumes
independence and identical distribution of service times of suc-
cessive customers. In many real-world systems, service times of
successive customers may be dependent and have different distri-
butions. To take into account such a dependence, so called Semi-
Markovian (SM) service process was considered, see, e.g., [3,18].
Importance of consideration of queues with SM service process for
practical needs is stressed, e.g., in recent work [1] and references
therein. In the paper [16], a very general model of the SM/SM/1
type with possible dependence of inter-arrival and service times
was considered under assumption that themarginal distribution of
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service times is of phase type. The BMAP/SM/1 type queuewithout
such an assumption andwith batch arrivals was analysed in [7,12].
The problem of computation of steady state distribution of queue
length andwaiting timedistribution in the systemwas successfully
solved. In this communication, we supplement results of [12] by
the effective recursive procedures for computation of themoments
of the queue length distributions. Moments have an important role
for performance evaluation of various queueing systems. Some-
times, information about the mean value and variance of queue
length is enough for managerial decisions. If this information is in-
sufficient and the shape of queue length distribution is of a primary
interest (e.g., to evaluate the probability that the queue length will
exceed a certain important level) while this shape hardly can be
found exactly, the shape can be estimated numerically based on
the knowledge of the value of several moments of the distribution,
see, e.g. [19]. Effective recursive procedures for computing the
moments of the queue length at service completion epochs and
arbitrary time for BMAP/G/1 queue were given in [6]. Direct ex-
tension of results from [6] appears not possible for the BMAP/SM/1
type queue because that results essentially exploit irreducibility of
somematrix generating functions at the point z = 1while they are
reducible when the service is of SM type. In this communication
we elaborate the recursive procedures for computation of the
moments of the queue length in this BMAP/SM/1 type system.

2. Preliminary results

We consider a single server system with an infinite buffer. The
arrival process is the BMAP . It is defined by the underlying process
νt , t ≥ 0, which is an irreducible continuous time Markov chain
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with a finite state space {0, . . . ,W } andwith thematrix generating
function D(z) =

∑
∞

k=0Dkzk, |z| ≤ 1, of square matrices Dk, k ≥ 0,
of size (W + 1) consisting of the intensities of transitions of the
Markov chain νt accompanied by the generation of k-size batch of
customers, k ≥ 0. The matrix D(1) is an infinitesimal generator of
the process νt . The stationary distribution vector θ of this process
is the unique solution of the system θD(1) = 0, θe = 1, where
e is a column vector consisting of 1’s, and 0 is a row vector of 0’s.
The average intensity λ (fundamental rate) of the BMAP is given by
λ = θD′(z)|z=1e. We assume that λ < ∞. For more detailed and
exact definition of the BMAP see [2,11].

The successive service times of customers are defined as the
sojourn times of the semi-Markovian process mt , t ≥ 0, (see [3])
in its states. This process has the finite state space {1, . . . ,M} and
the semi-Markovian kernel B(t) = (Bm,m′ (t))m,m′=1,M . Here and
in the sequel notation like m = 1,M means that the variable
m admits the values from the set {1, . . . ,M}. Matrix B(∞) is
assumed to be irreducible. The average service time is calculated
as b1 = b

∫
∞

0 tdB(t)e where the row-vector b is a vector of
the stationary distribution of the embedded Markov chain for the
semi-Markovian processmt . This vector is computed as the unique
solution to the system bB(∞) = b, be = 1.

Let it , it ≥ 0, be the queue length at the moment t ≥

0. The process it is non-Markovian. To study this process, first
we consider the three-dimensional process {it ,mt , νt}, t ≥ 0,
and then consider this process only at the instances of service
completion. Let in, in ≥ 0, be the number of the customers in
the system, νn, νn = 0,W , be the state of the BMAP underlying
process and mn, mn = 1,M, be the state of the SM underlying
process immediately after the n th service completion instant in
the system, n ≥ 1. It is easy to see that the three-dimensional
process ξn = {in,mn, νn}, n ≥ 1, is a discrete-time Markov chain
(embeddedMarkov chain for the considered queueingmodel). This
Markov chain belongs to the class of M/G/1 type Markov chains,
see [13].

Remark 1. In paper [12], the finite components, mn and νn, of
the Markov chain ξn, n ≥ 1, are listed in another order. In
principle, the order of these components is not very important.
However, from the algorithmic point of view, the choice made
above is better due to two reasons: (a) possibility of the direct
use of the known procedures for computation of the matrices
P(n, t), entries of which define probability to have n arrivals in the
BMAP during time t (otherwise, a tiresome procedure consisting of
many sequential coordinated permutations of rows and columns
is required, see [5]); (b) a reducible matrix D̃ appearing below (in
Theorem 2) already has the required for the algorithmic purposes
canonical normal form.

Introduce the vector generating functions

Y (z) = β(−D(z)) =

∫
∞

0
dB(t) ⊗ eD(z)t ,

V (z) =
1
z
(−D̃0)−1(D̃(z) − D̃0)β(−D(z))

where D̃0 = IM ⊗D0, D̃(z) = IM ⊗D(z), ⊗ is symbol of Kronecker
product of matrices, see [9].

Let also A(z) = zI − Y (z).
As follows, e.g., from [8], the necessary and sufficient condition

for ergodicity of the M/G/1 type Markov chain ξn, n ≥ 1, is the
fulfilment of the inequality

γ = [detA(z)]′|z=1 > 0. (1)

In our case, this inequality reduces to the inequality ρ < 1 where
the parameter ρ = λb1 is called as the load of the system. In what

follows we assume that this condition holds. Then the stationary
probabilities

p(i,m, ν) = lim
t→∞

P{it = i, mt = m, νt = ν},

π (i,m, ν) = lim
n→∞

P{in = i, mn = m, νn = ν}, i ≥ 0,

m = 1,M, ν = 0,W ,

exist.
Let pi, πi, i ≥ 0, be the rowvectors formed by the probabilities

p(i,m, ν) and π (i,m, ν) enumerated in the lexicographic order of
the components (m, ν).

Introduce the vector generating functions

P(z) =

∞∑
i=0

piz i, Π (z) =

∞∑
i=0

πiz i, |z| ≤ 1.

The following results are known, see, e.g., [12].

Proposition 1. The vector generating function Π (z) is the unique
analytical solution to the vector functional equation

Π (z)(zI − β(−D(z)))

= Π (0)(−D̃0)−1D̃(z)β(−D(z)) (2)

satisfying normalization condition Π (1)e = 1.

Proposition 2. The vector generating functions P(z) and Π (z) are
related as follows:

P(z) = λΠ (z)(zβ−1(−D(z))∇∗(z) − I)(D̃(z))−1 (3)

where

∇
∗(z) =

∫
∞

0
d∇B(t) ⊗ eD(z)t ,

∇B(t) = diag
{ M∑

m′=1

Bm,m′ (t), m = 1,M
}
,

diag{. . . } denotes the diagonal matrix with the diagonal entries listed
in the brackets.

In the literature, there exist several well-known approaches
for solving the equations of type (2), in particular, approach by
M. Neuts, see, e.g. [13,14] and the transform approach. In the
transform approach, see, e.g., [4,8], the unknown vector Π (0) is
computed by exploiting the analyticity property of the vector
generating function Π (z) in the unit disk |z| < 1 of the complex
plane.

Having the vector Π (0) = π0 been computed, the problem of
computation of the vector generating function Π (z), |z| < 1,
can be considered solved. If, for some purpose, the values of some
of the vectors πi, i ≥ 1, are interesting, then these vectors can
be recursively computed from equilibrium equations or via the
numerically stable procedures from [10,15].

Quite often, it is more important to compute not the probability
vectors πi, i ≥ 0, but the moments of the distribution (e.g., the
average value and variance of queue length, etc.). Formulas for
computation of the initial moments are trivial under known vec-
tors πi, 0 ≥ 1. E.g., the vector moment M̂k of order k of the
distribution of the embedded Markov chain ξn is computed as
M̂k =

∑
∞

i=1i
kπi, k ≥ 0. Computations based on this formula can

be easily implemented if the load of the system ρ is not high. If it is
high, say ρ > 0.8, essential problems can arise. Therefore, it is nec-
essary to have an alternativeway for computation of themoments.
It is well known that the moments M̂k can be easy computed if the
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