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a b s t r a c t

This paper carries out stochastic comparisons for two classical finite mixture models with different
baseline random variables and different mixing proportions in the sense of the hazard rate, reversed
hazard rate, likelihood ratio, mean residual lifetime and mean inactivity time orders. An application in
lead time model is presented to reveal the significance of the theoretical findings as well. The results
generalize and extend some known in the literature such as Hernandez (2007), Navarro et al. (2009) and
Navarro (2016).
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1. Introduction

Let X = (X1, . . . , Xk) be a random vector comprised of k
non-negative random variables. The distribution function of the
classical finite (positive) mixture of X1, . . . , Xk is defined as

FX,α(x) =

k∑
i=1

αiFi(x), (1)

where Fi is the distribution function of Xi and αi is the mixing
proportion (weight) such that

∑k
i=1αi = 1 and αi ≥ 0, for i ∈

{1, 2, . . . , k}. The survival and probability density functions of the
mixture of X1, . . . , Xk can be expressed as

FX,α(x) =

k∑
i=1

αiF i(x) and fX,α(x) =

k∑
i=1

αifi(x),

respectively,where F i = 1−Fi and fi are the corresponding survival
and probability density functions of Xi, for i = 1, . . . , k.

Finite mixture model plays an important role in the fields of
reliability theory, actuarial science, medicine and economics since
there exist practical situations where the sample of data are drawn
from a finite number of different populations. Therefore, the finite
mixture model is an effective tool for modelling the distribution of
random sample fromheterogeneous populations. Here,we present
two practical examples where the finite mixture models can be
applied.
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• Usually, there ismore than one reason (see, for example, [7])
causing the failures of a sample of items in the context
of industrial engineering. The failure distribution for each
reason can be adequately approximated by a simple density
function such as the negative exponential. Then, the overall
distribution can be modelled as a finite mixture of negative
exponential random variables.

• A system is coherent if each component is relevant and its
structure function is increasing in each component (see [3]).
In the context of reliability theory, the distribution and sur-
vival functions of a coherent system having k independent
and identically distributed components can be expressed
as a linear combination of the distributions and survival
functions of the ordered lifetimes of these k components,
respectively.

A finite mixture model allows us to identify and estimate the
parameters of interest for each component (subpopulation). Inter-
ested readers may find some other applications of finite mixture
models in [12,25,26], and the references therein.

Stochastic ordering, as a powerful tool to compare the magni-
tude and variability of different random variables or vectors, has
been widely used in reliability theory for comparing two coher-
ent systems with different components (cf. [16] and [4]), and in
actuarial science for comparing the riskiness of different insurance
portfolios (cf. [8] and [2]). Hereafter, wewill use ‘‘≥lr’’, ‘‘≥hr’’, ‘‘≥rh’’,
‘‘≥st’’, ‘‘≥mrl’’, ‘‘≥mit’’ and ‘‘≥disp’’ to represent the likelihood ratio
order, hazard rate order, reversed hazard rate order, usual stochas-
tic order, mean residual lifetime order, mean inactivity time order
and dispersive order, respectively. For explicit definitions and their
applications, one may refer to [19] and [24].
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Let FX,α [GY,β ] be distribution function of k-component fi-
nite mixture model with baseline random variables X1, . . . , Xk
[Y1, . . . , Yk ] and mixing proportions α1, . . . , αk [β1, . . . , βk ],
where Xi [Yi ] has distribution function Fi [Gi ], for i = 1, . . . , n. [10]
considered the mixture hazard rate ordering for the ordered
mixing distributions under different environments. [13] and [23]
obtained some comparison results for generalized mixtures (the
mixing proportions may be negative) with only two baseline ran-
dom variables. [22] obtained some comparison results for gener-
alized mixtures having different mixing proportions and extended
the preceding result to k-component finite mixture models when
k > 2. Specifically, it was proved that if F1≥hr[rh,lr] . . .≥hr[rh,lr]Fk,
then

αiβj ≤ αjβi whenever 1 ≤ i ≤ j ≤ k H⇒ FX,α≤hr[rh,lr]FX,β. (2)

Recently, [6] defined various local stochastic orderings to compare
the hazard rate functions of two mixture models with dynamic
mixing measures.

To the best of our knowledge, there are few results on stochas-
tic comparisons of finite mixture models with different baseline
random variables and different mixing proportions. Motivated by
this, the present paper is of the aim at studying the ordering results
between two finite mixture models FX,α and GY,β in the sense of
the hazard rate, reversed hazard rate, likelihood ratio order, mean
residual lifetime and mean inactivity time orders. The rest of the
paper is organized as follows: The main results are presented in
Section 2. Section 3 provides a practical application of our theoret-
ical findings in the lead timemodel. Section 4 concludes the paper.

Throughout the paper, we shall use ‘‘increasing ’’ and ‘‘decreas-
ing ’’ to denote ‘‘non-decreasing ’’ and ‘‘non-increasing ’’, respectively.
All expectations, inverse functions and ratio functions are assumed
to exist whenever they appear.

2. Main results

In this section, some ordering results are established for two
k-component finite mixture models both having different baseline
random variables and different sets of mixing proportions. In the
first place, sufficient conditions are provided for the reversed haz-
ard rate and hazard rate orders between two finitemixturemodels.

Theorem 2.1. Let FX,α and GY,α be two k-component finite mixture
models with common mixing proportions α1, . . . , αk. Suppose that

(i) G1≥rh[hr] . . .≥rh[hr]Gk or F1≥rh[hr] . . .≥rh[hr]Fk;

(ii) Gj(x)
Fj(x)

[
Gj(x)
F j(x)

]
is decreasing in j ∈ {1, . . . , k};

(iii) Fj≤rh[hr]Gj for all j ∈ {1, . . . , k}.

Then, it follows that FX,α≤rh[hr]GY,α.

Proof. We only give the proof for the reversed hazard rate or-
der since the proof for the hazard rate order is a trivial case of
Theorem 9 in [6]. Without loss of generality, it is assumed that
G1≥rh . . .≥rhGk. The reversed hazard rate function of FX,α is given
by

r̃X,α(x) =

∑k
j=1 αjfj(x)∑k
j=1 αjFj(x)

=

k∑
j=1

r̃Xj (x)pj(x),

where r̃Xj (x) is the reversed hazard rate function of Xj and pj(x) =
αjFj(x)∑k
i=1αiFi(x)

, j = 1, . . . , k. The expression of the reversed hazard rate
function of GY,α can be written as

r̃Y,α(x) =

∑k
j=1 αjgj(x)∑k
j=1 αjGj(x)

=

k∑
j=1

r̃Yj (x)qj(x),

where qj(x) =
αjGj(x)∑k
i=1αiGi(x)

. To reach the desired result, it is enough

to prove that ψ(x) = r̃Y,α(x) − r̃X,α(x) is non-negative for all x ∈

R+ = [0,+∞). Note that

ψ(x) =

k∑
j=1

r̃Yj (x)qj(x) −

k∑
j=1

r̃Xj (x)pj(x)

≥

k∑
j=1

r̃Xj (x)qj(x) −

k∑
j=1

r̃Xj (x)pj(x) =: ξ (x),

where the inequality follows from condition (iii). Thus, it suffices
to show that ξ (x) is non-negative for all x ∈ R+. Consider two
non-negative discrete random variables W and V on a sample
space {1, . . . , k} with probability mass functions qj(x) and pj(x),
j = 1, . . . , k, respectively. Using these observations, one can see
that

ξ (x) = E[φ(W)] − E[φ(V)], (3)

where φ(j) = r̃Xj (·), j = 1, . . . , k. According to the definition of
the usual stochastic order (see [24]), we need to prove that (3) is
non-negative by showing that φ(j) is decreasing in j and W≤stV.
On the one hand, based on condition (i), it follows that r̃X1 (x) ≤

· · · ≤ r̃Xk (x) for all x ∈ R+. Thus, we know that φ(j) = r̃Xj (x) is
decreasing in j ∈ {1, 2, . . . , k}. On the other hand, one can see that
for all x ∈ R+,
qj(x)
pj(x)

∝
Gj(x)
Fj(x)

, whenever j ∈ {1, . . . , k}.

Hence, the condition (ii) implies that qj/pj is decreasing in j ∈

{1, 2, . . . , k} and this concludes thatW≤lrV, which in turn implies
W≤stV. Thus, the desired result follows immediately. For the case
of F1≥rh . . .≥rhFk, it can be proved in similar arguments. □

The following example illustrates the assumptions (i), (ii) and
(iii) of Theorem 2.1.

Example 2.2. For some constant λ > 0, suppose that Xj and Yj,
j = 1, . . . , k, have respective survival functions

F j(x) = e−
2
jλ

√
x− x

jλ , whenever x ∈ R+, and

Gj(x) = (2/x)jλ, whenever x ≥ 2.

It is easy to check that Gj(x)
F j(x)

is decreasing in j ∈ {1, . . . , k} and
increasing in x ≥ 2. Thus, conditions (ii) and (iii) of Theorem 2.1
are satisfied. It can be examined that Gj(x) is decreasing in j ∈

{1, . . . , k} with respect to the hazard rate order, which implies
condition (i) of Theorem 2.1.

Let X be a non-negative random variable with density function
f . Then, the Glaser’s function ηX of X is defined by ηX (x) = −

f ′(x)
f (x)

for all x ∈ R+ whenever f (x) > 0 (see [11]). The following lemma
is introduced to establish the likelihood ratio order between two
finite mixture models.

Lemma 2.3 ([21]). Let X and Y be non-negative random variables
with distribution functions F and G, density functions f and g, and
Glaser’s functions ηX and ηY , respectively. Then

F≤lrG ⇐⇒ ηX (x) ≥ ηY (x) for all x ∈ R+.

Theorem 2.4. Let FX,α and GY,α be two k-component finite mixture
models with common mixing proportions α1, . . . , αk. Suppose that

(i) G1≥lr . . .≥lrGk or F1≥lr . . .≥lrFk;
(ii) gj(x)

fj(x)
is decreasing in j ∈ {1, . . . , k};

(iii) Fj≤lrGj for all j ∈ {1, . . . , k}.

Then, it follows that FX,α≤lrGY,α.
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