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a b s t r a c t

In the context of large-scale linear programs solved by a column generation algorithm, we present a
primal algorithm for handling the master problem. Successive approximations of the latter are created
to converge to optimality. The main properties are that, for every approximation except the last one, the
cost of the solution decreases whereas the sum of the variable values increases. Moreover, the minimum
reduced cost of the variables also increases and converges to zero with a super-geometric growth rate.
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1. Introduction

Weconsider a linear program in standard formcalled themaster
problem (MP):

z⋆
:= min c⊺λ

s.t. Aλ = b [π]

λ ≥ 0,
(1)

where λ, c ∈ Rn, b ∈ Rm, A ∈ Rm×n. The vector of dual
variables π ∈ Rm associated with the equality constraints appears
within brackets on the right side. When the number of variables is
very large, the latter is solved by a column generation algorithm.
Furthermore, we assume that λ = 0 is infeasible for (1), the sum of
the λ-variables s := 1⊺λ ≤ smax is bounded from above, and c ̸= 0,
three natural assumptions in the formulation of the MP for many
applications. The dual of (1) reads as:

z⋆
= max b⊺π

s.t. A⊺π ≤ c [λ] .
(2)

Notation. Vectors and matrices are written in bold face characters
by respectively using lower and upper case notations. In particular,
the matrix A := [aj]j∈{1,...,n} contains n column vectors. We also
use standard linear programming notation like ABλB, the subset of
basic columns of A indexed by B multiplied by the corresponding
vector of basic variables λB. Furthermore, we denote by 0 or 1 a
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vector/matrixwith all zero or one entries of appropriate contextual
dimensions. The index set of nonbasic columns N is used analo-
gously. Finally, let c̄⊺ := c⊺ − π⊺A be the reduced cost vector of the
λ-variables for any vector π of dual variables.

This paper examines the properties of an approximation
scheme for solving the MP . Given a feasible primal solution with
a finite cost, an approximation problem is expressed in three
different ways: a linear fractional program and the two equivalent
primal and dual linear programming versions. The first program
is essentially used to demonstrate the convergence properties.
The primal version is the one that would be solved by a column
generation algorithm whereas the dual version brings insightful
interpretation with the following two features: the dual variables
are optimized for maximizing the minimum reduced cost of the
λ-variables and the dual objective value is forced to be equal to
the cost of the current primal solution. In fact, the motivation
behind these formulations is that solving the dual one is a way to
verify if the optimality conditions provided by the Strong Duality
Theorem [2] are satisfied.

Several algorithms possess these features partially. For in-
stance, in the primal simplex (PS) algorithm [see [2]], all the dual
variables are fixed at every iteration, that is, determined according
to the current basic solution and the second feature is present by
construction, see Section 2. The second feature is also shown to
be true for the improved primal simplex algorithm [3], where the
dual variables are optimized subject to constraints that only set
to zero the reduced costs of the positive-valued variables (rather
than doing so for all the basic variables as in PS). At the other
extreme, when all of the dual variables are optimized for max-
imizing the minimum reduced cost, we find the minimum mean
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cycle-canceling (MMCC) algorithm devised for solving network
flow problems and shown to be strongly polynomial [5]. However,
MMCC does not require the equality between the primal and dual
objective values at every iteration.

Using a similar scheme, it has been observed that finding a
near optimal integer solution to set partitioning models with the
integral simplex (using decomposition) algorithm [7] occurs after
solving a very small number of approximation problems [6]. To
explain this behavior, we prove the following two properties for
the approximation schemeof theMP: If the current solution is non-
optimal, we proceed to the next approximation problem which
provides a new λ-solution where the objective function strictly
decreases while the sum of the variable values strictly increases.
Moreover, the so-called optimality parameter, that is, the largest
minimum reduced cost, also strictly increases and converges to
zero with a super-geometric growth rate.

The paper is organized as follows. Section 2 presents the ap-
proximation problem, the fundamental properties, and the re-
sulting algorithmic framework. We finally study two convergence
growth rates in Section 3 as well as a few special cases.

2. The approximation scheme

This section presents the approximation problem along with
some insights regarding its solutions. Fundamental properties sur-
rounding the optimality parameter are stated. Then the algorithm
comes naturally.

2.1. Approximation of the master problem

The scheme consists of solving the MP through successive ap-
proximations. Let AMPk denote the approximation problem solved
at iteration k ≥ 0. We assume that a feasible solution to theMP (1)
is known at k ≥ 1, say λk−1 of cost zk−1

= c⊺λk−1. We define AMPk

as

µk
:= min

c⊺λ − zk−1

1⊺λ
s.t. Aλ = b, λ ≥ 0, (3)

for which an optimal solution with an objective value µk is ob-
tained from a vector λk. The scalar µk measures the difference
between two successive λ-solution costs in MP (1) divided by the
sum of the variable values in the new one.

Using the Charnes–Cooper transformation of a linear fractional
program [1], set θ := 1/1⊺λ and y = θλ to obtain an equivalent
linear programming version of AMPk:

µk
= min c⊺y − zk−1θ

s.t. Ay − b θ = 0 [π]

1⊺y = 1 [µ]

y ≥ 0, θ ≥ 0,

(4)

where the domain of θ has been extended from θ > 0 to θ ≥ 0
to satisfy linear programming requirements. Since we assume that
the MP (1) has a finite optimal solution λ⋆ with s⋆ := 1⊺λ⋆

≤ smax,
an optimal solution to (4) with µ < 0 and θ = 0 is not feasible,
otherwise itwould imply an extreme ray of negative cost leading to
unboundedness for theMP . Similarly to theMP (1), the problem (4)
can be solved by a column generation algorithm. In that case, θ can
be seen as a static variable as opposed to the y-variables that are
dynamically generated as needed. Taking the dual of (4), we find:

µk
= max µ

s.t. 1µ + A⊺π ≤ c [y]
− b⊺π ≤ −zk−1. [θ ]

(5)

From an optimal solution yk and θ k to AMPk, the decision vector
relevant to the MP (1) can be recovered as λk

= yk/θ k with a cost
zk. Notice that the scalar sk = 1⊺λk

= 1/θ k is also obtained as a

by-product of solving AMPk. The process is initialized at iteration
k = 0 by solving:

µ0
:= min

c⊺λ − UB
1⊺λ

s.t. Aλ = b, λ ≥ 0, (6)

where the z-parameter in (3) is replaced by UB, an upper bound on
z⋆.
Interpretation. First observe that µk

≤ 0, ∀k ≥ 0. Indeed, obviously
µ0

≤ 0 by construction of (6) whereas for k ≥ 1, λk−1 is feasible
with c⊺λk−1

− zk−1
= 0 such that we also have µk

≤ 0 in (3).
An optimal solution (πk, µk) to (5) satisfies µk

≤ cj − aj⊺πk,
∀j ∈ {1, . . . , n}, hence the objective functionmaximizes the smallest
reduced cost of the λ-variables and µk is equal to the smallest one.
When solving the MP (1), the primal simplex algorithm does es-
sentially the same except that, because π⊺

= cB⊺AB
−1 is computed

according to the basic variables λB rather than being optimized,
µk is simply determined by inspection: µk

= max µ s.t. µ ≤

c̄j, ∀j ∈ {1, . . ., n}.Moreover, observe that (5) imposes b⊺π ≥ zk−1,
that is, the reduced cost c̄θ ≥ 0. Because θ k > 0, we have by
complementary slackness b⊺πk

= zk−1, an equality satisfied by
construction in the primal simplex algorithm for anybasic solution,
where π⊺b = cB⊺AB

−1b = cB⊺λB.
Note finally that the equality b⊺π = z⋆ is only satisfied by

an optimal feasible vector π⋆. Indeed, rather than verifying if the
classical conditions of the primal simplex algorithm are satisfied
(c̄B = 0 and c̄N ≥ 0, these being only sufficient optimality
conditions), we formulate in (5) a problem to verify if the necessary
and sufficient optimality conditions provided by the Strong Duality
Theorem [2] can be fulfilled, that is, if there exists a feasible dual so-
lution π with cost b⊺π equal to that of the current primal solution.
In the affirmative, we have an optimality certificate with µ = 0,
otherwise we provide a new λ-solution.

2.2. The optimality parameter

In this section,we derive two fundamental properties regarding
the outcome of solving AMPk, k ≥ 0. The first characterizes an
optimality condition for the MP while the second establishes the
behavior of z, µ, and s across two successive approximations. An
algorithm is then drafted upon these properties.

Proposition 1. For k ≥ 0, if µk
= 0, then λk is an optimal solution

for the MP (1).

Proof. If k = 0 and µ0
= 0, the vector λ0 is an optimal solution

to the MP because its cost z0 reaches the upper bound UB on z⋆.
Otherwise k ≥ 1 and µk

= 0 ⇔ c⊺λk
= zk = zk−1. The pair

(λk−1, πk−1) then satisfies the strong duality theorem for linear
programs and therefore provides feasible primal anddual solutions
for the MP (1). The same is true for λk and observe that whether it
is different from λk−1 or not is irrelevant although it provides an
alternative optimal solution in the affirmative. □

In light of Proposition 1, the value of µ grants a simple way to
ascertain optimality, thus the term optimality parameter coined by
Goldberg and Tarjan [5] is still convenient. In fact, Proposition 2
shows that if λk is non-optimal, the cost zk+1 strictly decreases
while both µk+1 and sk+1 strictly increase.

Proposition 2. For k ≥ 0, let λk be a non-optimal solution for the
MP (1). Then

zk > zk+1, µk < µk+1, and sk < sk+1. (7)
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