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a b s t r a c t

Computing the variance of a conditional expectation has often been of importance in uncertainty
quantification. Sun et al. has introduced an unbiased nested Monte Carlo estimator, which they call
1 1

2 -level simulation since the optimal inner-level sample size is bounded as the computational budget
increases. In this letter, we construct unbiased non-nestedMonte Carlo estimators based on the so-called
pick-freeze scheme due to Sobol’. An extension of our approach to compute higher order moments of a
conditional expectation is also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a random variable with probability density function
pX defined on ΩX , and let f : ΩX → R be a function. For another
random variable Y which is correlated with X , we are interested in
computing the variance of a conditional expectation

VarY

EX |Y [f ]


:=


ΩY


ΩX

f (x)pX |Y=y(x) dx − µ

2

pY (y) dy (1)

=


ΩY


ΩX

f (x)pX |Y=y(x) dx
2

pY (y) dy − µ2,

(2)

where pY and pX |Y=y denote the probability density function
(defined on ΩY ) of Y and the conditional probability density
function of X given Y = y, respectively, and further µ is defined
by

µ :=


ΩY


ΩX

f (x)pX |Y=y(x)pY (y) dx dy =


ΩX

f (x)pX (x) dx.

It follows from the well-known variance decomposition formula
that

VarY

EX |Y [f ]


= VarX [f ] − EY


VarX |Y [f ]


, (3)

where each term on the right-hand side is defined similarly.
The quantity VarY


EX |Y [f ]


has been used in the area of

uncertainty quantification. For instance, in [11], Zouaoui and
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Wilson used VarY

EX |Y [f ]


as a quality measure of uncertainty

on the mean time in a single-server queueing system due to
uncertainty on the parameters. Another usage of VarY


EX |Y [f ]


whichwehave inmind is as follows: Assume thatX denotes a set of
uncertain simulation inputs and Y does a sample observation data.
In the absence of the data Y , the prior variance VarX [f ] measures
the uncertainty of a simulation output f . If the data Y is available,
the uncertainty of f after knowing Y = y is represented by
the posterior variance VarX |Y=y[f ]. Thus, the uncertainty of f is
expected to be reduced to EY


VarX |Y [f ]


by obtaining the data Y .

It can be seen from the identity (3) that VarY

EX |Y [f ]


quantifies

how much the uncertainty of f can be reduced before and after
obtaining the data Y .

By the definition (1), it seems natural to use a nested Monte
Carlo estimator for VarY


EX |Y [f ]


. Recently, in [10], Sun et al. have

introduced the following unbiased nested Monte Carlo estimator:
For positive integers K and n1, . . . , nK , let y1, . . . , yK be sampled
independently from pY , and for k = 1, . . . , K , let x1k, . . . , xnkk be
sampled independently but conditionally from pX |Y=yk . Moreover,
let C = n1 + · · · + nK ,

f k =
1
nk

nk
j=1

f (xjk) and f =
1
C

K
k=1

nk
j=1

f (xjk).

Then, the quantity of interest VarY

EX |Y [f ]


is estimated by

W :=
SSτ −

K−1
C−K SSϵ

C −

K
k=1

n2
k/C

, (4)
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where

SSτ =

K
k=1

nk(f k − f )2 and SSϵ =

K
k=1

nk
j=1

(f (xjk) − f k)
2.

The interesting property of the estimatorW is that the optimal
inner-level sample sizes n1, . . . , nK remain bounded above as
the total computational budget C increases. That is, there is no
need to increase both the inner- and outer-level sample sizes
simultaneously for making the approximation error converge to
zero, and thus, it can be inferred from [10, Equation (10)] that
the estimator W achieves the Monte Carlo root mean square
error (RMSE) of order C−1/2 asymptotically. Because of this nice
property, Sun et al. have referred to their estimator as 1 1

2 -level
simulation. However, it may require a precomputation step to
choose proper inner-level sample sizes depending on a problem
at hand and a given cost C .

In this letter, by assuming that i.i.d. samplings from pY and
pX |Y=y for any y ∈ ΩY are possible, we construct several unbiased
non-nested Monte Carlo estimators for VarY


EX |Y [f ]


. We also

show that our approach can be extended in a straightforward way
to compute higher order moments of a conditional expectation.
We note that our assumption is same as that considered in [10].
Since our estimators are no longer of the nested form, we do not
need to take care of a proper choice of inner-level sample sizes,
and our estimators are naturally expected to achieve the Monte
Carlo RMSE of order C−1/2. Our idea for constructing non-nested
estimators stems from the pick-freeze scheme due to Sobol’ [7,
8], which was originally introduced for computing variance-based
sensitivity indices and has been thoroughly studied in the context
of global sensitivity analysis by Saltelli [6], Owen [4], Janon et al. [1],
and Owen et al. [5] to list just a few. In fact, in that context, the
quantity VarY


EX |Y [f ]


corresponds to the so-called first order

sensitivity index, if Y denotes a subset of uncertain simulation
inputs contained in X . Thus, our result of this letter can be
regarded as a generalization of the known results on variance-
based sensitivity analysis.

The remainder of this letter is organized as follows. In the
next section, we introduce four straightforward non-nestedMonte
Carlo estimators; one based on Mauntz [3] and Kucherenko
et al. [2] is unbiased whereas the other three essentially based
on Janon et al. [1] is biased. In the third section, we give bias
corrections of the latter estimators. In the fourth section, we
discuss an extension of our approach to compute higher order
moments. We conclude this letter with numerical experiments in
the last section.

2. Non-nested Monte Carlo

The key ingredient of the pick-freeze scheme lies in how to deal
with the square appearing in the first and second terms of (2). It is
easy to see from Fubini’s theorem thatwe can rewrite the first term
of (2) into

ΩY


ΩX

f (x)pX |Y=y(x) dx


×


ΩX

f (x′)pX |Y=y(x′) dx′


pY (y) dy

=


ΩY


ΩX


ΩX

f (x)f (x′)pX |Y=y

× (x)pX |Y=y(x′)pY (y) dx dx′ dy. (5)

The second term of (2), i.e., the squared expectation µ2, can be
simply rewritten into

µ2
=


ΩY


ΩX

f (x)pX |Y=y(x)pY (y) dx dy


×


ΩX

f (x′′)pX (x′′) dx′′


=


ΩY


ΩX


ΩX

f (x)f (x′′)pX |Y=y

× (x)pX (x′′)pY (y) dx dx′′ dy,

where we used Fubini’s theorem in the second equality. Thus, the
quantity VarY


EX |Y [f ]


is given by

VarY

EX |Y [f ]


=


ΩY


ΩX


ΩX


ΩX

f (x)

f (x′) − f (x′′)


× pX |Y=y(x)pX |Y=y(x′)pX (x′′)pY (y) dx dx′ dx′′ dy.

Therefore, our first Monte Carlo estimator, which has some
similarity to that in [3,2] for variance-based sensitivity analysis,
can be constructed as

U :=
1
N

N
n=1

f (xn)

f (x′

n) − f (x′′

n)

,

where, for each n, we first sample yn randomly from pY and
then sample xn and x′

n independently and randomly from pX |Y=yn .
Further, we sample x′′

n randomly from pX , or we first sample
y′′
n randomly from pY (independently of yn) and then sample x′′

n
randomly from pX |Y=y′′n . It is obvious that E[U] = VarY


EX |Y [f ]


,

meaning that the estimator U is unbiased.
Since the estimator U requires three function evaluations for

each n, the total computational budget C equals 3N . It is further
possible to construct Monte Carlo estimators which require two
function evaluations for each n, i.e., C = 2N . Let us consider an
approximation of µ instead of µ2. This can be done by using the
samples xn’s and x′

n’s commonly as either

µ̂ =
1
N

N
n=1

f (xn) or µ̂′
=

1
N

N
n=1

f (x′

n) or
µ̂ + µ̂′

2
.

Using these estimators for µ, we can introduce the following
Monte Carlo estimators for VarY


EX |Y [f ]


:

V1 :=
1
N

N
n=1

f (xn)f (x′

n) − µ̂2,

V2 :=
1
N

N
n=1

f (xn)f (x′

n) −


µ̂ + µ̂′

2

2

=
1
N

N
n=1


f (xn) −

µ̂ + µ̂′

2


f (x′

n) −
µ̂ + µ̂′

2


,

V3 :=
1
N

N
n=1

f (xn)f (x′

n) − µ̂µ̂′

=
1
N

N
n=1


f (xn) − µ̂

 
f (x′

n) − µ̂′

.

Note that the last two estimators are exactly of the same forms
as those in [1] for variance-based sensitivity analysis. These
estimators are actually the special cases of a generalized estimator

V :=
1
N

N
n=1

f (xn)f (x′

n) −

w1µ̂

2
+ w2µ̂

′2
+ w3µ̂µ̂′


, (6)
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