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a b s t r a c t

Pecin et al. (2016) introduced a ‘‘limited memory’’ technique that allows an efficient use of Rank-1 cuts
in the Set Partitioning Formulation of Vehicle Routing Problems, motivating a deeper investigation of
those cuts. This work presents a computational polyhedral study that determines the best possible sets of
multipliers for cuts with up to 5 rows. Experiments with CVRP instances show that the new multipliers
lead to significantly improved dual bounds and contributes decisively for solving an open instance with
420 customers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Vehicle Routing Problem (VRP) is among the most widely
studied combinatorial optimization problems, due to its direct
application in modern systems that distribute goods and services.
Reflecting the large variety of conditions present in those systems,
the VRP literature is spread into dozens of variants. For example,
there are variants that consider vehicle capacities, time windows,
multiple depots, heterogeneous fleet, pickups and deliveries, etc.
The Set Partitioning Formulation (SPF) [3] canmodel most of those
variants, the only assumption is that each customer should be
visited once. Let V = {1, . . . , n} be the set of customers and let
Ω be the set of all possible routes that respect the conditions of
the considered variant. For each route r ∈ Ω , let cr be the cost of
r, ari be a binary coefficient that indicateswhether r visits customer
i ∈ V , and λr be a variable deciding if the route r is used or not. The
formulation follows:

Min:

r∈Ω

crλr (1)

S.t.:

r∈Ω

ari λr = 1, ∀i ∈ V , (2)

λr ∈ {0, 1}, ∀r ∈ Ω. (3)
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Due to the huge number of variables, the linear relaxation of the
SPF must be solved by column generation. The pricing subproblem
consists in finding routes with minimum reduced cost, a problem
that is often modeled as a shortest path with resource constraints
and solved by labeling algorithms (see [22]).

The linear relaxation of the SPF is usually not strong enough to
be the basis of state-of-the-art exact algorithms, at least for the
most classical and competitive variants: the capacited VRP (CVRP)
and theVRPwith timewindows (VRPTW). For that purpose, itmust
be strengthened with additional cuts. An algorithm that combines
column and cut generation in a tree enumeration search is called
a branch-cut-and-price (BCP) algorithm. According to the classifi-
cation proposed in [21], robust cuts are those that do not change
the structure of the pricing subproblem. In contrast,non-robust cuts
change the pricing structure: each additional cut makes it harder,
and so, too many cuts make it intractable. Robust cuts may be ef-
fective. In fact, some successful BCP algorithms [16,11,15,23] only
use them. However, it seems that the potential for robust cuts in
the classical variants is exhausted. In fact, no effective new family
of robust cuts was found in the last decade. As a consequence, an
important line in current research is finding effective non-robust
cuts that are not very harmful to the labeling algorithms used in
the pricing.

The Set Partitioning constraints (2) are the natural source of
non-robust cuts. However, well-known families of cuts like clique
or odd holes [1] make the pricing too expensive [24]. An important
advance was the introduction of the Subset Row Cuts (SRCs) by
Jepsen et al. [13]. The proposed SRCs are subfamilies of clique and
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lifted oddholes defined over a small subset of the rows in (2). Those
particular non-robust cuts can be better treated by the labeling
algorithms. In fact, some of the best exact algorithms for the CVRP
and VRPTWuse SRCs [13,9,2,8]. A direct generalization of SRCs is to
consider any Chvátal–Gomory rank 1 cut [6] obtained over a small
subset of the rows. Preliminary experiments with those Rank-1
Cuts (R1Cs)were performed in [20].

The abovementioned algorithms separate SRCs in a very careful
way, limiting the number of added cuts in order to avoid an
excessive impact in the pricing. As a result, the potential of these
cuts is not fully exploited. Pecin et al. [19] introduced the limited
memory technique for making SRCs or R1Cs much less harmful to
the labeling algorithms, without necessarily compromising their
effectivity. The computational results on CVRP instances show a
breakthrough: due to the improved bounds, the size of the largest
solved literature instance increased from 150 to 360 customers.
The improved bounds made possible by the limited memory also
lead to big advances on VRPTW [18]. In this new context, there
is a clear motivation for obtaining even better bounds by also
separating more complex Rank-1 cuts.

This work is aimed at answering the following question: what
are the optimal sets of multipliers for Rank-1 Cuts with up to 5 rows?
This is done by a computational investigation of the set partitioning
polyhedra. Experiments on CVRP instances show that the newly
discovered cuts indeed lead to significantly improved bounds. Fi-
nally, we show how this allows to solve the Golden_20 instance
(420 customers). The paper is organized as follows. Section 2
reviews SRCs, Rank-1 cuts and the limited memory technique.
Section 3 describes the methodology used for discovering the
optimal sets of multipliers. Section 4 presents experiments on
CVRP instances. Finally, Section 5 contains some concluding re-
marks.

2. Limited memory Rank-1 Cuts

Given a base set C ⊆ V and a multiplier pi for each i ∈ C , the
following valid inequality for SPF is a Rank-1 Cut (R1C):
r∈Ω


i∈C

piari


λr ≤


i∈C

pi


. (4)

The Subset Row Cuts (SRCs) were introduced in Jepsen et al. [13]
and correspond to the particular case where all the multipliers
have the same value p = 1/k, for some integer k. The following
base set sizes and multipliers were investigated in that work:

• 3SRCs: |C | = 3 and p = 1/2. Those cuts have RHS 1 and
can be viewed as weakened clique cuts. Nevertheless, they are
still very effective in improving bounds and were the only SRCs
actually separated in [13,9,2,8].
• 5,2SRCs: |C | = 5 and p = 1/2. Those cuts have RHS 2 and can

be viewed as weakened odd hole cuts.

Pecin et al. [19] separated 3SRCs, 5,2SRCs and also:

• 4SRCs: |C | = 4 and p = 2/3. In spite of not having a multiplier
of format 1/k, they were still called SRCs in that work.
• 5,1SRCs: |C | = 5 and p = 1/3.

The only work that investigated and separated general R1Cs
is Petersen et al. [20]. The used multiplier sets were of mod-
k type [4], i.e, each individual multiplier should belong to
{0, 1/k, . . . , k − 1/k} for some small integer k. Separation was
performed exhaustively, testing all possibilities for certain values
of C and k. The authors also tested finding the multipliers using
the MIP formulation proposed in [10]. The experiments indicated
that R1Cs more complex than SRCs could indeed improve bounds.

However, those cuts could not be incorporated into state-of-the-
art codes: not only the separation itself is very expensive, but the
added cuts slow down too much the labeling algorithm, making
the pricing intractable.

Given C ⊆ V , a vector of multipliers p of dimension |C |, a
memory set M, C ⊆ M ⊆ V , the limited memory (C,M, p)-Rank
1 Cut (lm-R1C for short) is:
r∈Ω

α(C,M, p, r)λr ≤


i∈C

pi


, (5)

where the coefficient of a route r is computed as:
1: function α(C,M, p, r)
2: coeff ← 0, state← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈ M then
5: state← 0
6: else if i ∈ C then
7: state← state+ pi
8: if state ≥ 1 then
9: coeff ← coeff + 1, state← state− 1

10: return coeff
Variable coeff stores the coefficient to be returned. Each time a
vertex i in C is visited, variable state is increased by pi. When state
becomes larger or equal to 1, its value is reduced by 1 unit and coeff
is incremented. The previous definition is completely analogous to
that of the limited memory Subset Row Cuts proposed (or lm-SRC)
by Pecin et al. [19], the only difference being that the multiplier
vector p replaces a single scalar, which was originally the same for
all i ∈ C . WhenM = V , the Function α will return ⌊


i∈C piari ⌋ and

the lm-R1C will be identical to an R1C. On the other hand, when
M is strictly contained in V , the lm-R1C may be a weakening of its
corresponding R1C. This happens because every time the route r
leaves M , the variable state is reset to zero, potentially decreasing
the returned coefficient. Nevertheless, using a dynamic adjustment
of thememory sets, the lm-R1Cs can still yield exactly the same gap
improvements of ordinary R1Cs [19].

The advantage of the lm-R1Cs over R1Cs (or lm-SRCs over SRCs)
is their much reduced impact on the labeling algorithm used in the
pricing, when |M| ≪ |V |. Labeling algorithms roughly consist of
expanding sets of non-dominated partial routes called buckets, and
then reducing the bucket sizes by eliminating newly dominated
routes. Clearly, a crucial step of such algorithm is the bucket re-
duction by dominance, which heavily depends on the domination
rule. Such a rule must ensure that the dominated partial route can
always be replaced by the dominating one in any feasible route that
contains it, without increasing (and potentially reducing) its cost.
For the pricing subproblem that remains after adding lm-R1Cs to
the SPF given by (1)–(3), the labeling algorithm keeps track of the
state (the current value of variable state in the computation of α)
of each lm-R1C with non-zero dual variable, for each partial route
contained in each bucket. Then, for a partial route r1 to dominate
another partial route r2, the reduced cost of r2 must exceed that
of r1 at least in the amount of the sum of the dual variables of all
lm-R1Cs whose states in r1 are larger than those in r2. This sum
represents that worst-case increase in the reduced cost of r1 that
may not occur for r2 considering the same feasible extension. If, on
one hand, the limited memory technique greatly reduces the im-
pact of lm-R1Cs on the pricing by resetting many states to zero,
on the other hand, having a small number of possible states is still
an essential property of these cuts to keep the pricing subproblem
tractable. Note that this number is as small as the lowest common
denominator of the components of the vector p for the newly pro-
posed cuts.
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