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a b s t r a c t

Markov Switching models have known a strong growth since their introduction by James
Hamilton in the late 1980’s. Thesemodels are used as an essential tool for the analysis of the
economic cycles. In this paper, we are interested in a class of bilinear models withmarkov-
switching regime (MS − BL). These models first appeared in Bibi and Aknouche (2010).
Parameter estimation via maximum likelihood (ML) of the (MS − BL) model has been
considered in Bibi and Ghazel (2015). However, construction and numerical maximization
in the approachproposedbyBibi andGhazel (2015) are computationally intractable. Hence,
we propose an expectation–maximization (EM) procedure that provides an alternative
method for maximizing the likelihood function in such situations. Convergence and con-
sistency of the (EM) algorithm are discussed in this context. Finally, a Monte Carlo study is
presented and two real data examples are proposed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Several heteroskedastic models have been developed to capture sudden burst in volatility and extreme values. One
of the first models proposed for such purpose in time series analysis is the standard bilinear model proposed by Subba
Rao (1978) and Granger and Andersen (1978). Bilinear processes (BL) are a class of non-linear models that has received
heightened attention in the probabilistic and statistical literature from their first release. Indeed, they have been widely
used for modeling time series (Xt)t∈Z with occasional sharp spikes which are often found in meteorology, oceanography,
geology, biology and agriculture (see Subba Rao (1981) and the references therein for further discussion).

However, a striking feature of these models is that their parametric structure is assumed to be constant in all the sample
and cannot incorporate more fundamental changes in the observed series and structural breaks in the dynamic behavior
of the data. A natural generalization of the (BL) models mitigates this deficiency and leads to models whose coefficients
may vary over time. Markov-switching bilinear model (MS − BL) is one of the most versatile models to use when there
is consecutive but recurrent regime shifts intercepted by short phases of calm. The MS − BL model is also the simplest
extension of themarkov-switching ARMAmodel proposed by Francq and Zakoïan (2001) that allows to capturewell changes
in the variance over time and lagged error dynamic. It first appeared in Bibi and Aknouche (2010) where necessary and
sufficient conditions ensuring the existence of stationary (strict and weak) and ergodic solutions have been given as well
as necessary and sufficient conditions of existence of higher order moments. Later, parameter estimation via maximum
likelihood (ML) approach has been considered in Bibi and Ghazel (2015). Finally, as supported by authors in Bibi and Ghazel
(2015) theMS−BL process can be considered as a second-order approximation to any underlying non-linear process, such as
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standard bilinearmodels (Granger and Andersen, 1978), Hidden-Markovmodels (Francq and Roussignol, 1997),MS−ARMA
models (Francq and Zakoïan, 2001), some classes of MS − GARCH models (Abramson and Cohen, 2007) and independent-
switching bilinear models (Aknouche and Rabehi, 2010). Hence, MS − BL model is a suitable model for estimating non-
linearity in mean in a large and a very general context.

In this paper, we are interested in the parameter estimation ofMS−BLmodel. The estimation procedure proposed in Bibi
and Ghazel (2015) is not applicable in practice. Indeed, the likelihood function of the available observed (incomplete) data
is complicated in structure resulting in enormous difficulties to solve maximization problems. An associated complete-data
problemwith the same parameters can be formulated fromwhich it is possible to find the maximum likelihood estimations
(MLE) in a simpler manner. The expectation–maximization (EM) algorithm (Demster et al., 1977) provides an attractive
alternative method for deriving the MLE of an incomplete-data problem by introducing an associated complete-data one.
Previous applications of this algorithm toMarkov-switchingmodels includeworks of Kiefer Nicholas (1980) that considered
the case of i.i.d. switching regressions, Baum et al. (1970) that considered a scalar system with no explanatory variables or
autoregressive dynamics, but with an unobserved Markov switching process for the mean and variance, Liporace (1982)
that discussed the vector case and Hamilton (1990) that considered the general systems where the processes are subject to
discrete shifts in autoregressive parameters, with the shifts themselves modeled as the outcome of discrete valued Markov
process. Applications related to (nonlinear) time series combined with MS models include MS generalized autoregressive
heteroskedasticity (MS GARCH) models introduced by authors in Lamoureux and Lastrapes (1990) that have justified such a
combination. Several other authors have taken up the (MS GARCH)model and studied it in details. They all faced a challenging
task when computing the exact likelihood that was infeasible in practice. Some of them have chosen a modified version of
the (MS GARCH) model that overcomes the path dependence problem by maximum likelihood (Haas et al., 2004; Klaassen,
2002). A generalized method of moments (GMM) procedure and a Bayesian Markov chain Monte Carlo (MCMC) algorithm
have been proposed as alternative estimation methods, not dependent on the likelihood, by authors in Francq and Zakoïan
(2001); Bauwens et al. (2011) and Bauwens et al. (2010). However, Author in Augustyniak (2014) has proposed to compute
the MLE of theMS GARCH model without resorting to a simplification of the model by developing an approach based on the
Monte Carlo EM algorithm. He also showed how the asymptotic variance–covariance matrix of the MLE can be estimated
while in Francq and Zakoïan (2001) it was not possible to obtain the asymptotic standard errors of the GMMestimates due to
numerical difficulties. Hence, we deeply believe that making bilinear models more flexible by introducingMarkov switching
is a worthwhile endeavor since at least manyMS GARCH models can be expressed as aMS BLmodel with the advantage that
the nonnegativity constraints on the parameters is relaxed by this latter.

The paper is organized as follows: Section 2 presents the MS − BL model and recalls some of its statistical properties. In
Section 3, we describe our estimationmethodology and in Section 4 a simulation study is performed. Two real data examples
are proposed in Section 5 to illustrate the usefulness of the proposed methodology. Finally, concluding remarks are given in
Section 6.

2. The MS-BL model and its statistical properties

A real valued time series (Xt)t∈Z, Z = {. . . , −1, 0, 1, . . .}, defined on a probability space (Ω, ℑ, P) is said to be a general
Markov Switching Bilinear (MS BLd) time series if it admits the representation:

Xt =

p∑
i=1

ai (st) Xt−i +

q∑
j=1

bj (st) et−j +

P∑
i=1

Q∑
j=1

cij (st) Xt−iet−j + et (2.1)

where (et)t∈Z is an i.i.d sequence of random variables with zero mean and variance 1. (st)t∈Z is a first order Markov chain on
a finite state space S = {1, . . . , d}, stationary, homogeneous, irreducible and independent of (et)t∈Z and of lagged Xt i.e. st
and {(et , Xk−1) , k ≤ t} are independent. For all i, j ∈ S the transition probability matrix P =

(
pij

)
1≤i,j≤d, that determines the

evolution in st is given by pij = P (st = j |st−1 = i ) with
∑d

j=1pij = 1. To understand the typical behavior ofMS − BLmodels,
we generated a multitude of trajectories. Figs. 1 and 2 are respectively a synthetic trajectory generated from a MS − BL (1)
model, for a (1) = 0.09, a (2) = 0.4033, p11 = 0.65, p22 = 0.85 andσ 2

= 1, and the corresponding autocorrelation function
ACF. Fig. 1 illustrates what is new in MS − BL model against the non regime switching bilinear model (i.e., the classical BL
model). Mean reverting effect and the presence of occasional but recurrent consecutives spikes are common properties of
standard BLmodels andMS−BLmodels. However, the BLmodel presents lengthy periods of calm followed by brief sequence
of high intensity spikes while in the MS − BL model there is short periods of calm followed by moderate intensity spikes.
Most of the generated trajectories had the same behavior. Furthermore, from Fig. 2 one can observe a cyclical behavior of
the synthetic data generated by theMS−BLmodel against no cyclical effect for the standard BLmodel represented in Fig. 1.

As in the next section the exact likelihood function will be replaced by the likelihood conditional on the first p0
observations, where p0 = max {p, q} + 1, the probability law governing the initial unobserved state sp0 is drawn from a
separate probability distribution whose parameter ρ = (ρ1, . . . , ρd) is a (d × 1) vector unrelated to P :

ρk = P
(
sp0 = k \ Φ1 (p0) , θ

)
, k = 1, . . . , d,
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