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Abstract

In his 1951 study of Nile River data, H.E. Hurst introduced the rescaled range statistic-the R/S statistic.
He argued via a small simulation study that if Xi , i = 1, . . . , n, are i.i.d. normal then the R/S statistic should
grow in the order of

√
n. However, Hurst found that for the Nile River data, the R/S statistic increased not

in the order of
√

n, but in the order nH , where H ranged between 0.75 and 0.80. He discovered that the
effect also appeared in other sets of data. This is now called the Hurst phenomenon. We shall establish
some unexpected universal asymptotic properties of the R/S statistic, which show conclusively that the
Hurst phenomenon can never appear for i.i.d. data.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction: the Hurst phenomenon

In 1951 H.E. Hurst [13] published the results of his investigations of water outflow from the
great lakes of the Nile basin. Hurst wanted to determine the reservoir capacity that would be
needed to develop the irrigation along the Nile to its fullest extent. The problem that he basically
solved was as follows:

In the years of high runoff the Nile water is not fully utilized, but in the years of low runoff
there is a shortage of water. Hence for efficient use of the water resource an optimum constant
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yearly outflow is required. What is that optimum constant yearly outflow and what is the storage
capacity necessary to maintain it?

Here was his solution: Suppose X i is the total yearly outflow of water from the source of the
Nile in year i , i = 1, . . . , n. Set µn =

1
n

n
i=1 X i .

Question: What is the reservoir capacity required to maintain a constant yearly outflow µn
over the years i = 1, . . . , n? Let

S∗

i =

i
j=1


X j − µn


, for i = 1, . . . , n,

M∗
n = max


0, S∗

1 , . . . , S∗
n


and m∗

n = min

0, S∗

1 , . . . , S∗
n


.

The reservoir storage required is the adjusted range

R∗
n = M∗

n − m∗
n . (1)

We need storage capacity M∗
n to store to a maximum overflow M∗

n over the n year mean µn and
an additional storage m∗

n to cover the periods when there is a deficit in the outflow from the n year
mean µn . We easily see that µn is the maximum constant yearly outflow that can be maintained
over the n year period.

Unfortunately in planning a reservoir system we do not know a priori what the yearly
outflows are going to be for the period in which the system will be in use. The usual
assumption before Hurst was that X i = µ + ei , where the ei are some kind of white
noise, i.e. e1, . . . , en are i.i.d. with E (ei ) = 0 and 0 < V ar (ei ) = σ 2 < ∞. In fact
there was empirical evidence for this assumption. When Hurst depicted the measurements
of the Nile River outflow in a frequency histogram, for instance, the maximum annual
gage readings that were recorded at the Roda gage near Cairo for the years between 641
C.E. and 1946 C.E., he obtained a convincingly normal shaped curve around the sample
mean.

Hurst made the first steps in the analysis of the random variable R∗
n under the assumption

that e1, . . . , en are i.i.d. N (0, 1). Through simulation experiments based on tossing ten sixpence
coins 1000 times, cutting cards from a probability deck 1000 times and observing the serial
numbers of bonds he found that E R∗

n grows approximately like 1.20
√

n. (For more details
see his Table 6.) Incidentally this agrees well with the following exact result of Feller [8]: Let
S∗ (t) = S (t) − t S (T ) /T for 0 ≤ t ≤ T , T > 0, where S (t) is a standard Brownian motion on
[0, T ]. Set

R∗

T = max

0, S∗ (t) , 0 ≤ t ≤ T


− min


0, S∗ (t) , 0 ≤ t ≤ T


.

Then ER∗

T =
√

T π/2 ≈ 1.2533
√

T . Noting that R∗
n , defined in terms of X1, . . . , Xn i.i.d.

N

µ, σ 2


, is equal in distribution to

σ max

0, S∗ (i) , 0 ≤ i ≤ n


− σ min


0, S∗ (i) , 0 ≤ i ≤ n


we have E R∗

n ≈ σ
√

nπ/2 ≈ 1.2533σ
√

n for large n. The exact value was later shown by Solari
and Anis [29] to be

E R∗
n = σ


n

2π

n−1
i=1

(i (n − i))−1/2
= σ

√
n


π/2 + o (1)


.
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