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Abstract

In financial practices and research studies, we often encounter a large number of assets. The availability
of high-frequency financial data makes it possible to estimate the large volatility matrix of these assets.
Existing volatility matrix estimators such as kernel realized volatility and pre-averaging realized volatility
perform poorly when the number of assets is very large, and in fact they are inconsistent when the number of
assets and sample size go to infinity. In this paper, we introduce threshold rules to regularize kernel realized
volatility, pre-averaging realized volatility, and multi-scale realized volatility. We establish asymptotic
theory for these threshold estimators in the framework that allows the number of assets and sample size
to go to infinity. Their convergence rates are derived under sparsity on the large integrated volatility matrix.
In particular we have shown that the threshold kernel realized volatility and threshold pre-averaging realized
volatility can achieve the optimal rate with respect to the sample size through proper bias corrections, but
the bias adjustments cause the estimators to lose positive semi-definiteness; on the other hand, in order to be
positive semi-definite, the threshold kernel realized volatility and threshold pre-averaging realized volatility
have slower convergence rates with respect to the sample size. A simulation study is conducted to check the
finite sample performances of the proposed threshold estimators with over hundred assets.
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1. Introduction

Volatility analysis for high-frequency financial data is a vibrant research area in finan-
cial econometrics and statistics. With high-frequency data, we can better study market micro-
structure and directly estimate market volatility. Several volatility estimation methods have been
developed. Estimators of a univariate integrated volatility include realized volatility (RV) [3,6],
two-time scale realized volatility (TSRV) [30], multi-scale realized volatility (MSRV) [28],
wavelet realized volatility (WRV) [15], kernel realized volatility (KRV) [4], pre-averaging re-
alized volatility (PRV) [17], and a quasi-maximum likelihood estimator (QMLE) [27]. For mul-
tiple assets, we encounter a non-synchronization problem caused by the fact that transactions for
different assets occur at distinct time, and the high-frequency data are observed at mismatched
time points. Methods for estimating an integrated co-volatility consist of multi-scale realized co-
volatility based on previous tick data synchronization [29], realized kernel volatility estimator
based on refresh time scheme [5], a quasi-maximum likelihood estimator based on generalized
sampling time [1], and pre-averaging realized volatility [12] (see also [7,13,19–21,25]). These
estimators have good performances for a relatively small number of assets. When there are a
large number of assets in financial practices such as asset pricing, portfolio allocation, and risk
management, the volatility estimators designed for estimating a small integrated volatility ma-
trix perform very poorly, and in fact, they are inconsistent when both the number of assets and
sample size go to infinity [26]. For the case of a large number of assets, we need to impose some
sparse structure on the integrated volatility matrix and employ regularization such as threshold-
ing to obtain consistent estimators of the large volatility matrix [22,24,23]. In particular, Tao
et al. [22,24] investigated convergence rates of multi-scale realized volatility matrix estimator in
the asymptotic framework that allows both the number of assets and sample size to go to infinity,
and showed that the estimator achieves optimal convergence rate with respect to the sample size.

This paper considers the kernel realized volatility (KRV) [5,4], the pre-averaging realized
volatility (PRV) [12,17], and the multi-scale realized volatility (MSRV) [22,29] based on
generalized sampling time scheme. We investigate their convergence rates in the asymptotic
framework that both the number of assets and sample size go to infinity. Our asymptotic analyses
are under dependent micro-structure noises, finite moment conditions on asset prices and sparsity
on the integrated volatility matrix. We have shown that the estimators based on MSRV, KRV, and
PRV with proper bias corrections can achieve the optimal convergence rate with respect to the
sample size, but they may not be positive semi-definite. In order to be positive semi-definite,
KRV and PRV estimators can only achieve a slower convergence with respect to the sample size.
There is a trade-off between positive semi-definiteness and fast convergence rate.

The rest of the paper is organized as follows. Section 2 provides the price model and
the data structure. Section 3 describes five realized volatility estimators based on the kernel
realized volatility, pre-averaging realized volatility, and multi-scale realized volatility with
generalized sampling time. Section 4 presents a sparse condition and regularized estimators and
establishes their asymptotic behaviors when both the number of assets and the sample size go
to infinity. Section 5 features a simulation study to illustrate the finite sample performances of
the estimators. Section 6 outlines the key ideas and main steps of the proofs, with Appendix
collected further detailed technical proofs.

2. The model set-up

Denote by X(t) = (X1(t), . . . , X p(t))T the vector of true log prices of p assets at
time t . Modern finance theory usually assumes that X(t) follows a continuous-time diffusion



Download English Version:

https://daneshyari.com/en/article/5130168

Download Persian Version:

https://daneshyari.com/article/5130168

Daneshyari.com

https://daneshyari.com/en/article/5130168
https://daneshyari.com/article/5130168
https://daneshyari.com

