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a b s t r a c t

Hugh Everett III presented pure wave mechanics, sometimes referred to as the many-worlds inter-
pretation, as a solution to the quantum measurement problem. While pure wave mechanics is an ob-
jectively deterministic physical theory with no probabilities, Everett sought to show how the theory
might be understood as making the standard quantum statistical predictions as appearances to observers
who were themselves described by the theory. We will consider his argument and how it depends on a
particular notion of branch typicality. We will also consider responses to Everett and the relationship
between typicality and probability. The suggestion will be that pure wave mechanics requires a number
of significant auxiliary assumptions in order to make anything like the standard quantum predictions.
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1. Introduction

It is tempting to claim that one can derive strong conclusions
from weak assumptions, but there is a no-magic constraint. Since
the conclusion of a valid deductive argument cannot be stronger
than the premises required to get it, if one gets a strong conclu-
sion, one must have made similarly strong assumptions some-
where along the way. In practice, however, it is often difficult to
say where.

Hugh Everett III (1955a, 1955b, 1956, 1957) presented pure
wave mechanics, also known as the many-worlds interpretation,
as a solution to the quantum measurement problem.1 While he
believed that there was a sense in which one could derive the
standard quantum statistics from pure wave mechanics alone, his
approach was significantly less ambitious than deducing prob-
abilistic predictions. That said, even Everett's relative weak ac-
count of quantum statistics requires significant additions to pure
wave mechanics.

Here we are concerned with Everett's presentation of pure
wave mechanics, his derivation of the quantum statistics, and
DeWitt's and Graham's response. We will pay particular attention
to the explanatory role played by alternative notions of branch
typicality and the relationship between typicality and probability.

The aim is to understand Everett's approach better and to get a
sense of the strength of the auxiliary assumptions one would need
to derive anything like the standard quantum probabilities from
pure wave mechanics.2

The present paper seeks to get at what Everett thought about
typicality and probability, including his reaction to DeWitt and
Graham's criticisms. While there are methodological morals to this
story that clearly apply more generally, other proposals for how to
understand quantum typicality and probability require careful
analysis on their own terms.3 The present argument involves how
one might best identify a physical theory for the purpose of
probabilistic explanation. Since it is implausible that there are
canonical criteria for how to individuate theories or for what
constitutes a good explanation, the approach will be thoroughly
pragmatic. How the methodological morals might be best applied
beyond the story told here is largely left to the reader.

2. Pure wave mechanics

While pure wave mechanics is an objectively deterministic
theory that says nothing whatsoever about probability, Everett
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1 Everett himself did not refer to branches as worlds in his written work. See
Barrett (2011b, 2016a) for discussions of his metaphysical commitments and the
role of metaphysics in interpreting pure wave mechanics more generally.

2 See Barrett (2016b) for a preliminary discussion of typicality in pure wave
mechanics.

3 Questions concerning the relationship between typicality and probability
arise in other formulations of quantum mechanics as well. For a recent discussion
of typicality and probability in Bohmian mechanics see Goldstein (2012).

Studies in History and Philosophy of Modern Physics 58 (2017) 31–40

www.sciencedirect.com/science/journal/13552198
www.elsevier.com/locate/shpsb
http://dx.doi.org/10.1016/j.shpsb.2017.02.001
http://dx.doi.org/10.1016/j.shpsb.2017.02.001
http://dx.doi.org/10.1016/j.shpsb.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2017.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2017.02.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2017.02.001&domain=pdf
http://dx.doi.org/10.1016/j.shpsb.2017.02.001


sought to describe a sense in which it might be understood as
making the same statistical predictions as the standard von Neu-
mann–Dirac collapse theory.4 The thought was to get the standard
quantum predictions as subjective appearances to observers who
were themselves described quantum-mechanically. What this
meant for Everett was that the relative measurement records of a
typical relative observer will exhibit the standard quantum sta-
tistics. In order to track the various auxiliary assumptions required,
we will start with a specification of pure wave mechanics.

Everett presented pure wave mechanics as a modification of
the standard collapse formulation of quantum mechanics. And,
following von Neumann (1955), Everett took the standard collapse
formulation of quantum mechanics to be characterized by the
following principles:

1. Representation of States: The state of a physical system S is
represented by a vector ψ S of unit length in a Hilbert space  .

2. Representation of Observables: A physical observable O is re-
presented by a set of orthogonal vectors  . These vectors re-
present the eigenstates of the observable, each corresponding to
a different value.

3. Dynamical Laws:
I. Linear dynamics: If no measurement is made, the system S
evolves in a deterministic linear way: ψ ψ( ) = ^( ) ( )t U t t t,

S S1 0 1 0 .
II. Nonlinear collapse dynamics: If a measurement is made, the
system S randomly, instantaneously, and nonlinearly jumps to
an eigenstate of the observable being measured: the probability
of jumping to ϕ S when O is measured is ψ ϕ|〈 | 〉|2.

In addition to these principles, Everett appealed to the standard
eigenvalue-eigenstate link to attribute absolute properties to a
system. In particular, a system S has an absolute value for ob-
servable O if and only if ψ ∈S  , and the value is given by the
eigenvalue corresponding to ψ S.

Everett believed, however, that its incompatible dynamical
laws rendered the von Neumann-Dirac collapse theory logically
inconsistent and hence untenable. He presented what he called
the question of the consistency of the standard theory in the
context of an “amusing, but extremely hypothetical drama” (1956,
74).5 This would later become known as the Wigner's Friend
story after Eugene Wigner (1961) retold it without attribution to
Everett.

A version of the story goes as follows. Suppose that a spin-1/2
system S begins in the state

α β↑ + ↓ ( )1x S x S

and a friend F and his measuring device M begin ready to make a
measurement of the x-spin of S. Assuming perfect correlating in-
teractions, the linear dynamics (von Neumann's Process 2, rule 3II
above) predicts that the resultant state will be:

α β↑ ↑ ↑ + ↓ ↓ ↓ ( )“ ” “ ” “ ” “ ” . 2x F x M x S x F x M x S

In contrast, if one were to suppose, as suggested by the stan-
dard collapse theory, that there is something special about the
friend or his measuring device that causes a collapse of the state of
his object system on measurement, one would end up with one of
the states predicted by the collapse dynamics (von Neumann's

Process 1, rule 3I above):

↑ ↑ ↑ ( )“ ” “ ” 3x F x M x S

or

↓ ↓ ↓ ( )“ ” “ ” 4x F x M x S

with probabilities α| |2 and β| |2 respectively.
The moral of the story is that the two dynamical laws of the

standard von-Neumann-Dirac formulation of quantum mechanics
predict incompatible states when applied to the same physical
interaction. Further, as Everett explicitly recognized, state (2) is in
principle empirically distinguishable from states (3) and (4) by an
inference measurement on the composite system consisting of F,
M, and S.6

Everett held that one only has a satisfactory formulation of
quantum mechanics if one can provide a satisfactory account of
such nested measurements. Hence, if one cannot tell the Wigner's
Friend story consistently, then one does not have a satisfactory
formulation of quantum mechanics.

Everett believed that the Wigner's Friend story could be told
simply and consistently in the context of pure wave mechanics,
the theory one gets by starting with the standard collapse theory
and simply deleting the collapse dynamics (rule 3II). In particular,
he believed that the final state after F's measurement interaction is
simply given by state (2), thus removing the possibility of a con-
tradiction. And, again, he believed that an external observer would
in principle be able to show this empirically by an appropriate
interference measurement on the composite system F, M, and S.7

But he also believed that it will appear to F that she has a perfectly
determinate measurement outcome, and, more generally, that one
can recover the standard quantum statistics for such appearances
from pure wave mechanics alone. He took pure wave mechanics
thereby to provide a satisfactory resolution to the quantum mea-
surement problem.

As Everett described his project, “we shall deduce the prob-
abilistic assertions of [the collapse dynamics (3II)] as subjective
appearances” to observers who are themselves treated as perfectly
ordinary physical systems always subject to the linear dynamics
(3I) “thus placing the theory in correspondence with experience.”
The upshot is that “We are then led to the novel situation in which
the formal theory is objectively continuous and causal, while
subjectively discontinuous and probabilistic.” Everett took this to
solve the nested measurement problem because “while this point
of view thus shall ultimately justify our use of the statistical as-
sertions of the orthodox view, it enables us to do so in a logically
consistent manner, allowing for the existence of other observers”
(1956, 77–8). Specifically, this amounted to describing a sense in
which pure wave mechanics predicted the standard quantum
statistics for the relative measurement records of a typical relative
observer.8

4 See Dirac (1930) and von Neumann (1955) for early descriptions of the
standard collapse theory.

5 Everett was arguably too critical here. The theory as it stands is just ambig-
uous inasmuch as one does not know precisely when to apply rules 3I and 3II. That
is, one could remove the threat of inconsistency by specifying strictly disjoint
conditions for when each rule obtains. This is what Wigner later sought to do. For
his part, Everett assumed that a measuring device should evolve linearly like every
other physical system. It is this auxiliary assumption that yields the inconsistency.

6 This might be accomplished by measuring an observable that has state (2)
and the orthogonal state one gets by subtracting the second term rather than
adding it to the first as eigenstates corresponding to different eigenvalues.

7 In other words, the linear dynamics entails that Everett worlds cannot be
causally closed. This point is also discussed in Albert (1986) and Albert and Barrett
(1995), and a point that we will return to later.

8 There is a long tradition of physicists and philosophers who have sought as
Everett did to deduce the standard quantum probabilities from pure wave me-
chanics. The list includes, among others, Hartle (1968), DeWitt (1971), Graham
(1973), Farhi, Goldstone and Gutmann (1989), Deutsch (1999), Zurek (2005),
Saunders (2010b), Wallace (2010b, 2012), and Sebens and Carroll (2016). While the
details of the arguments and precisely what is meant by quantum probability varies
significantly, each of these deductions relies on auxiliary assumptions that go be-
yond pure wave mechanics, at least as Everett understood the theory. See Saunders
(2010) and Kent (2010) for discussions of this tradition.
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