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a b s t r a c t

Over many years, Aharonov and co-authors have proposed a new interpretation of quantum mechanics:
the two-time interpretation. This interpretation assigns two wavefunctions to a system, one of which
propagates forwards in time and the other backwards. In this paper, I argue that this interpretation does
not solve the measurement problem. In addition, I argue that it is neither necessary nor sufficient to
attribute causal power to the backwards-evolving wavefunction Φ〈 | and thus its existence should be
denied, contra the two-time interpretation. Finally, I follow Vaidman in giving an epistemological reading
of Φ〈 |.

& 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

It is uncontroversial to say that there is no (global) consensus as
to which interpretation of quantum mechanics should be adopted.
In this paper, I will evaluate a new interpretation proposed by
Aharonov and Gruss (2005), Aharonov, Cohen, Gruss, and Land-
sberger (2014) called the Two-Time Interpretation (TTI),1 which
claims to be local, deterministic and to predict and explain novel
phenomena. I will concentrate on whether this interpretation
solves the measurement problem: since a prerequisite for joining
the panoply of interpretations of quantum mechanics (QM) is to
solve the measurement problem. I will argue that it does not.

The measurement problem arises as follows. When a measur-
ing device2 measures a system initially in the state

Ψ α β| 〉 = | ↑ 〉 + | ↓ 〉S x x , the joint state of the system and apparatus
evolves, by linearity, to

Φ α β| 〉 = | ↑ 〉 | 〉 + | ↓ 〉 | 〉 ( )+ up down . 1S A x S A x S A

The macroscopic measuring device is now entangled with the
system and the composite system is in a superposition with re-
spect to the product state basis. However, we never experience
macroscopic superpositions, such as measuring devices pointing at
both ‘up’ and ‘down’. Rather, the measuring device will appear to
display a single definite outcome.

In practice, in order to get empirical content from the formal-
ism we apply a set of rules for measurement (sometimes called
‘the measurement algorithm’ (Wallace, 2012)): write the state in
the basis of the measured quantity/observable, and the pointer,
α | 〉| 〉a Ai i i , and then interpret α| |1

2 as the probability (Pr) of finding
state | 〉a1 . In the case above, the measuring device is either found in
the state | 〉up with α= | |Pr 2 or | 〉down with β= | |Pr 2. Thus one way of
describing the measurement problem is to say that this algorithm
lacks a justification and ‘to solve the measurement problem we
need to give a well-formulated theory which explains the success
of the measurement algorithm’ (Wallace, 2008).

In this paper I evaluate whether the TTI can solve this mea-
surement problem. As the TTI arises from a particular reading of
the two-state vector formalism (TSVF), I will first, in Section 2,
discuss the TSVF. In Section 3, I outline the key tenets of the TTI as
well as its proposed solution to the measurement problem. Section
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1 The two papers cited explicitly expound the TTI, but other papers such as
Aharonov and Rohrlich (2005) and Aharonov and Vaidman (2008) hint at it, since
— as will become apparent shortly — the TTI naturally arises out of a wider re-
search programme.

2 As usual, we model a measurement by a composite unitary operator U that
takes the measuring device to one of several distinguishable (orthogonal) states
depending on the system's state. Thus, a measuring apparatus that measures spin-x
behaves as follows:

| ↑ 〉 | 〉 → | ↑ 〉 | 〉U ready upx S A x S A

| ↓ 〉 | 〉 → | ↓ 〉 | 〉U ready down .x S A x S A
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4 first investigates whether the TTI explains the success of the
measurement algorithm, and then whether it is well-formulated.
In Section 5, I argue that there are further problems facing this
interpretation, and in Section 6 I advocate an alternative reading of
the situation.

2. What is the two-state vector formalism?

The two-state vector formalism (TVSF) (Aharonov & Vaidman,
2008; Aharonov, Bergmann, & Lebowitz, 1964) alters the tradi-
tional formalism of QM by assigning an additional state vector Φ〈 |
to a system, as well as the usual state vector, Ψ| 〉. The latter state
vector Ψ| ( )〉t0 unitarily evolves according to the Schrödinger
equation, under U. However, the state Φ〈 ( )|t1 evolves unitarily
backwards in time under †U and thus is called the ‘backwards-
evolving state vector’.3 Combined they form the two-state vector,

Φ Ψ〈 || 〉 ( )2

which also evolves unitarily. The philosophical motivation behind
TSVF is to remove the time asymmetry implicit in the standard QM
formalism, which Aharonov and Reznik (2002) see as originating
in the usual conception of state, rather than being inherent in QM.
Using final and initial conditions is more time-symmetric than just
initial conditions.

The TSVF is not an interpretation of QM: rather it is a mathe-
matical formalism that applies to pre- and postselected (PPS) en-
sembles. A preselected ensemble is a prepared ensemble: all the
systems gave the same outcome of a particular measurement at t0.
For example, it might be specified that the electrons in a Stern-
Gerlach experiment are all initially | ↑ 〉z . A postselected ensemble
is defined analogously: e.g. those systems that gave the value ai for
observable A at time t1 ( > )t0 .

Postselection can be viewed as specifying a final condition for
the system just as preparation/preselection specifies an initial
condition. A PPS system (a member of a PPS ensemble) therefore
has two boundary conditions: a final as well as an initial
condition.4 These boundary conditions (and therefore the two-
state vector) are defined by measurement outcomes, as shown in
Fig. 1. We envisage that measurements are made on the system in
the period < <t t t0 1, as shown in Figs. 2 and 3. Note how the si-
tuation differs from classical mechanics: classically, if we know the
initial condition and the dynamics (the Hamiltonian) then the
information contained in the final condition is redundant. How-
ever, in QM there is, for some measurements, no way even in
principle to predict the result. Thus, specifying a final condition
gives us more information about the system than just an initial
condition.

Next, a method of determining the probabilities of outcomes of
different measurements on PPS systems is needed. This is given by
the Aharonov, Bergmann and Lebowitz (ABL) rule (Aharonov et al.,
1964) which tells us, given an initial state | 〉a and a final state | 〉b ,
the probability that an intermediate projective measurement of
the non-degenerate operator C yields eigenvalue ci. We begin with
the formula

  
 Σ

( | ) =
( | ) ( | )
( | ) ( | ) ( )

c a b
b c c a
b c c a

, .
3

i
i i

j j j

Note that this expression is derived from the probability calculus:
the Hamiltonian is set to zero and the only physical assumption is

that ci screens off b from a, i.e. the intermediate measurement is
projective. Using ( | ) = |〈 | 〉|Pr g f g f 2, we find:


Σ

( | ) =
|〈 | 〉〈 | 〉|
|〈 | 〉〈 | 〉| ( )

c a b
b c c a

b c c a
, .
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i

i i

j j j
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In the case of non-trivial time evolution, the ABL rule becomes:


Σ

( | ) =
|〈 | ( )| 〉〈 | ( )| 〉|
|〈 | ( )| 〉〈 | ( )| 〉| ( )

c a b
b U t t c c U t t a

b U t t c c U t t a
,

, ,
, ,

.
5
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For the PPS system shown in Figs. 1–3, the ABL rule gives Pr¼1
for an intermediate result of =+Sz

1
2
and likewise for =+Sx

1
2
. For

=+ =S Pr,y
1
2

1
2
. The ABL rule is time-symmetric in the sense that, if

the initial and final states are exchanged, then provided the Ha-
miltonian is time-reversal invariant, the probabilities do not
change. Note that for convenience the self-Hamiltonian (i.e. the
Hamiltonian of the measured system) is often set to zero by ad-
vocates of this programme (for example, (Aharonov et al., 2014, p.
138)), a practice which I follow in this paper. Gell-Mann and Hartle
refer to the ABL rule as a “time-neutral formulation of quantum
mechanics” (Gell-Mann & Hartle, 1994, p. 7).

Does TSVF have any advantage over the standard formalism?
According to proponents of the TSVF, certain features of QM that
would otherwise be opaque, are brought to light through the
prism of the TSVF. For instance, discussing the path of a quantum
particle through an interferometer is a fraught task: did the par-
ticle pass through both slits? Can we, or should we, assign a tra-
jectory? In this connection, Vaidman suggests that the TSVF is il-
luminating: in particular, it is the right formalism for describing
the past of a quantum particle (Vaidman, 2013; Danan, Farfurnik,
Bar-Ad, & Vaidman, 2013). Additionally, the proponents of TSVF

Fig. 1. Preselection at t0: =+Sz
1
2
. Postselection at t1: =+Sx

1
2
.

Fig. 2. An intermediate measurement of Sx in the period < <t t t0 1 finds the ei-
genvalue + 1

2
with Pr¼1.

Fig. 3. An intermediate measurement of Sz in the period < <t t t0 1 finds the ei-
genvalue + 1

2
with Pr¼1.

3 In what follows, for brevity Φ〈 | denotes the generic backwards-evolving state.
4 In practice, measurements on postselected ensembles involve doing a mea-

surement on the whole preselected ensemble, then performing a selective mea-
surement and discarding the results for systems that do not pass the postselection.
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