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A B S T R A C T

We present an “upstream analysis” strategy for causal analysis of multiple “-omics” data. It analyzes
promoters using the TRANSFAC database, combines it with an analysis of the upstream signal
transduction pathways and identifies master regulators as potential drug targets for a pathological
process. We applied this approach to a complex multi-omics data set that contains transcriptomics,
proteomics and epigenomics data. We identified the following potential drug targets against induced
resistance of cancer cells towards chemotherapy by methotrexate (MTX): TGFalpha, IGFBP7, alpha9-
integrin, and the following chemical compounds: zardaverine and divalproex as well as human
metabolites such as nicotinamide N-oxide.
ã 2016 The Author(s). Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Cancer cells are currently subject of very intense studies of the
molecular mechanisms of cancerogenesis. Multiple “-omics” data
are generated worldwide measuring expression of proteins,
miRNAs and long non-coding RNAs of the cancer cells and, as
prerequisite, the epigenomic signatures of DNA methylation and
various modifications of chromatin. One of the most important
problems is to decipher the mechanisms how cancer cells develop
resistance against chemotherapy and search for possible ways to
suppress such resistance by interacting with specific molecular
targets. One of the important drugs currently widely used in cancer
therapy is methotrexate (MTX). Emergence of resistance to MTX of
various cancer cells is one of the most important problems in the
long-term application of this drug. Several authors compared MTX
resistant cells with sensitive cells and generated various sets of

“-omics” data [1,2]. We focused our attention on the MTX resistant
cells of the colon cancer cell line HT29.

According to the classical view on the mechanism of resistance
to the chemotherapy, the resistant clones/lineages are already
present in the tumor tissue ab-initio (due to some randomly
occurring “favorite” mutations) and get proliferated during the
drug treatment while other cells die. However, more recently, a
different point of view gets more and more evidences that at least
in some cases the cancer cell populations experiencing transitions
from a sensitive state to the resistant state during and sometime as
a result of the treatment using various chromatin reprogramming
mechanisms [3,4]. In this paper we follow this novel point of view
and search for such specific reprograming mechanisms in the
cancer cells.

Methotrexate (MTX) is a folate antagonist, which kills the
proliferating cell by binding tightly to the enzyme dihydrofolate
reductase (DHFR). Due to this binding the pathway of de novo DNA
synthesis is blocked [1]. But continued administration to patients
often results in the emergence of drug-resistance [2]. The analysis
of the molecular mechanisms of the resistance can help to identify
the most promising targets to combat this resistance. Numerous
“-omics” studies on the molecular mechanisms of resistance offer
the possibility to mine these high-throughput data by applying
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computational tools and analyzing functions and regulation of the
involved genes. Such “-omics” data are often deposited in
databases such as ArrayExpress [5] or Gene Expression Omnibus
(GEO) [6], and derived sets of differentially expressed genes (DEG)
(expression signatures) can be found in more specialized databases
such as the Expression Atlas [7], the Mouse Expression Database
(GXD) [8] and others. These signatures can be used directly for
selection of potential drug targets using the mere statistical
significance of the expression changes. For a more refined analysis
of the molecular mechanisms a conventional approach of mapping
the DEG sets to Gene Ontology (GO) categories or to KEGG
pathways, for instance by GSEA (gene set enrichment analysis), is
usually applied [9,10].

Since such approach provides only a very limited clue to the
causes of the observed phenomena, we introduced earlier a novel
strategy, the “upstream analysis” approach for causal interpreta-
tion of the expression changes [11–13,18]. This strategy comprises
two major steps: (1) analysis of promoters and enhancers of
identified DEGs to identify transcription factors (TFs) involved in
the process under study; (2) reconstruction of signaling pathways
that activate these TFs and identification of master-regulators on
the top of such pathways. The first step is done with the help of the
TRANSFAC database [14] and site identification algorithms, Match
[15] and CMA [16]. The second step is done with the help of the
TRANSPATH database [17], one of the first signaling pathway
databases available, and special graph search algorithms imple-
mented in the geneXplain platform [18].

In this paper, we introduce two enhancements to the upstream
analysis approach. First, we add a new graph-weighting schema to
the algorithm of master-regulator search that enables to incorpo-
rate proteomics data by adding a “context protein” list that pushes
the graph search towards those nodes that are expressed in the
cell. The second improvement of the approach is an adding the
option to analyse TF binding sites in potential enhancer and
silencer areas of the genome that are inferred from overlapping
transcriptomics and epigenomics ChIP-seq data. These two
enhancements of our “upstream analysis” approach at present
open the possibility to perform multi-omics studies using the
geneXplain platform.

Our study revealed that the novel multi-omics “upstream
analysis” approach allows to identify a number of important
master regulators of MTX resistance. Among them are some that
are known to play essential roles as targets for anti-cancer drug
therapy and our results suggest them for the use as anti-resistance
targets. These targets were used in the final step of our analysis, i.e.
the identification of chemical compounds that have the potential
of inhibiting or activating these targets and consequently
suppressing the MTX resistance mechanisms.

In silico discovery of chemical compounds that are able to
inhibit or activate given molecular targets is one of the most
important problems in chemoinformatics. Most often such drug
discovery attempts involve the design of molecules that are
complementary in shape and charge to the target with which they
are supposed to interact. This usually relies on computational
molecular modeling techniques. This type of modeling is often
referred to as structure-based drug design [19]. In the current work
we used an alternative method called ligand-based drug design, or
(Q)SAR (Quantitative) Structure-Activity Relationships, which
relies on the knowledge of other molecules that bind to the
biological target of interest [20]. We are using one of the most
powerful instruments in this field, the computer program PASS,
which is based on Multilevel Neighborhoods of Atoms (MNA)
descriptors to consider the chemical structures of the known
ligands of the target of interest and Bayesian approach to estimate
the probability that new ligands interact with the same target
[21,22]. The PASS program was trained on more the 3500 different

molecular targets and can be used now to scan thousands and
millions of chemical compounds and find new potential ligands for
those targets.

In the current work we applied PASS for the identification of
chemical compounds that have the potential to be ligands for the
selected targets to combat the MTX resistance mechanisms.
Among the promising compounds we found some known drugs,
such as zardaverine and divalproex as well as human metabolites
such as nicotinamide N-oxide.

As a conclusion, we propose a novel combination of multi-
omics bioinformatics analysis with a systems biology approach to
the analysis of signaling networks for predicting drug targets and
with an advanced chemoinformatics approach for the identifica-
tion of potentially effective chemical compounds. This approach
was successfully applied to the analysis of cancer drug resistance
mechanisms.

The workflow of drug target identification is freely accessible
online on the geneXplain platform [23].

2. Data and methods

2.1. Microarray data, differential expression analysis

For the analysis of gene expression changes in MTX resistant
cells we took publicly available microarray data from Gene
Expression Omnibus (NCBI, Bethesda, MD, USA), data entry
GSE11440 [24]. The authors analyzed the transcriptome of the
colon cancer HT29 cells that were MTX-sensitive and compared
them to MTX-resistant cells generated from the same cell line. In
total 6 Affymetrix microarray experiments were done, 3 biological
replicates for the sensitive cells and 3 replicates for the resistant
cells.

Raw microarray data of MTX-resistant and sensitive cells, the
latter being used as control in our study, were normalized and
background corrected using RMA (Robust Multi-array Average).
The Limma (Linear Models for Microarray Data) method was
applied to define fold changes of genes and to identify the
statistically significantly expressed genes using a Benjamini-
Hochberg adjusted p-value cutoff (�0.05) [25].

2.2. Proteomics data

Proteomics data of the HT29 colon cancer cell line were
extracted from the PRIDE database (EBI, Hinxton, UK, http://www.
ebi.ac.uk/pride), with the project accession number PRD000369
(http://www.ebi.ac.uk/pride/archive/projects/PRD000369). The
data were generated and analyzed in the publication [26]. The
authors extracted proteins from different regions of multicell
tumour spheroids grown from HT29 colon carcinoma cells. They
used trypsin digestion iTRAQ 4-plex labeling, 2D separation using
OffGel (24 fractions) and RP nanoHPLC, MALDI TOF-TOF MS/MS
instruments to determine changes in protein expression across the
regions analysed. Authors identified proteins using Mascot
software version 2.2 (Matrix Science, U.K.), which compared MS/
MS generated data against the Swiss-Prot 2010 human protein
database containing 20473 sequences. They set Mascot search
parameters for Peptide mass tolerance at 100 ppm (ppm) and MS/
MS tolerance at �0.7 Da. Trypsin proteolysis (cleavage to the C-
terminal side of lysine and arginine except when proline is present)
was selected allowing for one missed proteolytic cleavage. A 95%
confidence threshold (p < 0.05) was used for searching the MS/MS
data, which corresponded to a Mascot score threshold of �28. We
took the list of proteins (with UniProt accession numbers) from
PRIDE (1107 unique accession numbers) and converted them into
Ensembl genes (1109 genes). No protein quantitative data were
used in our further analysis.
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