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Abstract

The direct position determination (DPD) approach is a single-step method which uses the Maximum Likelihood estimator to localize sources
emitting electromagnetic energy using combined data from all available sensors. The DPD is known to outperform the traditional 2-step methods
under low Signal to Noise Ratio (SNR) conditions. We propose an improvement to the DPD approach, using the well known minimum-variance-
distortionless-response (MVDR) approach. Unlike Maximum Likelihood, the number of sources need not be known before applying the method.
The combination of both the direct approach and MVDR yields unprecedented localization accuracy and resolution for weak sources. We
demonstrate this approach on the problem of multistatic radar, but the method can easily be extended to general localization problems.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The localization of sources emitting electromagnetic or
acoustic energy is needed in wild-life tracking, radio-
astronomy, seismology, medical-diagnosis, communications,
and other engineering applications. Common localization meth-
ods use two estimation steps. First, intermediate parameters are
estimated. Intermediate parameters are usually time of arrival,
direction of arrival, Doppler frequency shift or signal strength.
These estimated parameters are then used, in a second step, to
estimate the actual location of the emitter. The Direct Position
Determination (DPD) approach has been recently proposed [1]
as a single-step Maximum Likelihood localization technique.
A single-step approach is a technique in which the estimator
uses exactly the same data as used in two-step methods but
estimates the source location directly, skipping the intermedi-
ate (first) step. This can be viewed as searching for the emitter
location that best explains the collected data. From estimation
theory point-of-view the two-step approach is inferior, since in
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the first step the parameters are measured independently, ig-
noring the constraint that the measurements relate to the same
emitter location. Indeed, this method has been shown to be su-
perior to the two-step methods for low SNR. In addition, the
DPD method has been shown to be more robust by inherently
selecting reliable observations without the need for a goodness-
of-fit test (such as the chi-square test). This method was also
extended to radar scenarios in [2], where the Maximum Like-
lihood target location estimation was developed as well as the
Cramer–Rao lower bound for the estimation error.

When there are multiple sources the DPD is no longer equiv-
alent to the Maximum Likelihood Estimator (MLE). The exact
MLE can be derived but it requires a multi-dimensional search
which is usually impractical. An alternative for the Maximum
Likelihood parameter estimator is the Minimum Variance Dis-
tortionless Response (MVDR) estimator. It was originally pro-
posed by Capon [3] for frequency–wavenumber power spectral
density analysis, but has since been used extensively as a high
resolution method. The idea is to adaptively select the weight
vector in order to fix the response for the parameter value of
interest while minimizing the output power. Unlike the Maxi-
mum Likelihood approach, the MVDR approach does not need
to know a-priori the number of targets (or model order) and
therefore it is a robust approach with good resolution and im-
munity to jamming and interference.

Our test case is multistatic radar, which is a generalization
of the classical mono-static radar system. In a multistatic
radar system multiple cooperative receivers are used for target
localization. This could be generalized further with the addition
of multiple transmitters (a scheme usually termed MIMO radar,
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e.g. [4]), but we limit our demonstration to a single transmitter,
thus ignoring difficulties caused by mutual interference of the
transmitted signals.

The focus of this paper is the demonstration of the single-
step (direct) MVDR concept for source localization. As an ex-
ample, we use a simplified multi-static radar model, neglecting
radar clutter for brevity. Future work includes the full blown
radar model. Note that MVDR is applied to the target’s loca-
tion estimation in a single step, and not for intermediate param-
eters estimation. Some previous publications touch upon our
proposed approach but in no way cover the full potential of
this method (see for example [5–7]). Other papers use MVDR
for Angle of Arrival Estimation but titles that refer to local-
ization [8]. We show that the estimation method proposed here
can significantly improve target resolution compared with the
single-source MLE. Fine target resolution can prove very use-
ful for target localization within many dense decoys.

2. Problem formulation

Consider a transmitter and L widely separated receiving
arrays. Each receiving array consists of Mr elements. The array
aperture is typically a few signal wavelengths. The transmitted
signal s(t) is confined to the time interval t ∈ [0, T ]. It is
assumed that the signal s(t) is perfectly known, which is usually
the case when there is line of sight from the transmitter to the
receiving array. In the following analysis the signal impinges
on a single target whose coordinates vector is denoted by pt ,
and is reflected by the target towards the receiving arrays. We
assume that the transmitter, arrays and target are all confined to
a plane, and the transmitter and receiving arrays locations are
known while the target location needs to be estimated.

The ℓ-th array output is given by the Mr × 1 vector,

rℓ(t) = aℓ(pt )αℓs(t − τℓ(pt ))e
i2π fD,ℓt

+ nℓ(t) (1)

where αℓ is the signal attenuation at the ℓ-th array, τℓ is the sig-
nal delay associated with the propagation from the transmitter
to the target and then to the ℓ-th array, which satisfies,

τℓ(pt ) =
∥pt − pℓ∥

c
+

∥pt − pTx∥

c
(2)

where pTx is the transmitter’s location, pℓ is the ℓ-th array loca-
tion, and c is the speed of propagation. Further, nℓ(t) is a Mr ×1
wide-sense stationary, white, zero mean, complex Gaussian
noise, aℓ(pt ) is a Mr × 1 vector representing the ℓ-th array re-
sponse to a target at pt , and fD,ℓ is the Doppler frequency shift.
We note that without loss of generality we can impose the con-
straint ∥aℓ(pt )∥

2
= 1. Since the transmitter and arrays coop-

erate the signal transmission time is perfectly known. This can
be accomplished by direct interception of the transmitted signal
or by synchronization of the transmitter and receiving arrays.
Finally, we assume the target is illuminated by Mp consecutive
pulses. To simplify the exhibition, it is assumed that the target
speed is small enough to neglect the Doppler effect. Note that
this formulation can be modified to describe somewhat different
localization problem. For example, in source localization, such
as smart phones localization, assuming the transmitted signal is

known, the only change is in the dependence of τℓ on the target
position. A similar derivation was performed in [9]. Further, if
the signal is not known, it could be incorporated into the esti-
mation problem, but this is beyond the scope of this work.

The DFT of the received j th pulse is given by

r̄ℓ,k ( j) = aℓ (pt ) αℓ ( j) s̄ke−i2π fkτℓ(pt ) + n̄ℓ,k ( j) (3)

where fk =
k
K fs is the frequency associated with the kth

coefficient, K is the number of samples, fs is the sampling
frequency, and r̄ℓ,k , s̄k and n̄ℓ,k are the kth Fourier coefficients
of rℓ(t), s(t) and nℓ(t), respectively, and where it is assumed
that the observation time is longer than the received signal
interval plus its delays at all sensors.

Define

r̄ℓ ( j) , [r̄T
ℓ,1 ( j) , r̄T

ℓ,2 ( j) , . . . , r̄T
ℓ,K ( j)]T

n̄ℓ ( j) , [n̄T
ℓ,1 ( j) , n̄T

ℓ,2 ( j) , . . . , n̄T
ℓ,K ( j)]T

Aℓ (pt ) , diag(e− j2π f1τℓ , . . . , e− j2π fK τℓ) ⊗ aℓ (pt )

s̄ , [s̄1, . . . , s̄K ]
T

(4)

where the dependence of τℓ on pt is suppressed and where
⊗ denotes the Kronecker product. We can now write (3) in a
vector form

r̄ℓ ( j) = αℓ ( j) Aℓ (pt ) s̄ + n̄ℓ ( j) . (5)

In the next section we derive the (single-source) Maximum
Likelihood estimator for pt , where {αℓ ( j)} are treated as
unknown parameters. As explained in the introduction, it is
possible to derive an exact Maximum Likelihood estimator.
However, such an estimator needs to know a-priori the num-
ber of targets, and it requires a multi-dimensional search. In
Section 2.2 we use the single-source Maximum Likelihood es-
timator to obtain the multi-source MVDR estimator, which is
our main goal.

2.1. Target localization using the maximum likelihood estima-
tor

Using (5) and the fact that {n̄ℓ( j)} are statistically indepen-
dent complex Gaussian vectors, the Maximum Likelihood cost
function is

Q(pt ) =

L
ℓ=1

Mp
j=1

∥r̄ℓ ( j) − αℓ ( j) Aℓ (pt ) s̄∥2 . (6)

The signal attenuation {αℓ ( j)} is assumed to be independent
from pulse to pulse, as is suggested by the well known Swerling
II and IV target models, which assume the target radar-cross-
section (RCS) is independent from pulse to pulse (see [10]).
The attenuation coefficient that minimizes the cost function (6)
is given by

α̂ℓ ( j) =


s̄H AH

ℓ (pt ) Aℓ (pt ) s̄
−1

s̄H AH
ℓ (pt ) r̄ℓ ( j)

= (s̄H s̄)−1s̄H AH
ℓ (pt ) r̄ℓ ( j) (7)

where we used

AH
ℓ (pt ) Aℓ (pt ) = IMr K ∥aℓ∥

2
= IMr K . (8)
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