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a b s t r a c t

Many medical conditions are only indirectly observed through symptoms and tests. Developing predic-
tive models for such conditions is challenging since they can be thought of as ‘latent’ variables. They
are not present in the data and often get confused with measurements. As a result, building a model that
fits data well is not the same as making a prediction that is useful for decision makers. In this paper, we
present a methodology for developing Bayesian network (BN) models that predict and reason with latent
variables, using a combination of expert knowledge and available data. The method is illustrated by a
case study into the prediction of acute traumatic coagulopathy (ATC), a disorder of blood clotting that sig-
nificantly increases the risk of death following traumatic injuries. There are several measurements for
ATC and previous models have predicted one of these measurements instead of the state of ATC itself.
Our case study illustrates the advantages of models that distinguish between an underlying latent con-
dition and its measurements, and of a continuing dialogue between the modeller and the domain experts
as the model is developed using knowledge as well as data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Purely data-driven approaches are currently accepted as the
primary, if not the only, way of developing predictive models.
Because of the impressive results achieved with such approaches
by organizations like Amazon and Google, it is often assumed that
this success is repeatable in other domains as long as a large
enough amount of data is available. However, a purely data-driven
approach can only predict the type of values recorded in a dataset,
such as measurements made, decisions taken or outcomes re-
corded. Even when large volumes of data exist, purely data driven
machine learning methods may not provide either accurate predic-
tions or the insights required for improved decision-making. In this
paper, we consider the common real-world situation in which suc-
cessful decision making depends on inferring underlying or latent
information that is not – and can never be – part of the data. In
such a situation a predictive model for decision support will
contain latent variables representing this underlying state but
the values of these variables will not be present in the data. We
therefore need to depend on domain expertise to identify the
important latent variables and to model relations between them
and the observed variables.

Domain experts do not just substitute guesswork for data. They
may have access to information that is not machine-readable and
they should back up any judgements by reference to published re-
search whenever possible. Yet, such expert knowledge is usually
avoided in data-driven approaches using arguments such as ‘avoid-
ing subjectivity’ and ‘using facts based on the data’ [1,2]. The use of
latent variables is also limited: some data-driven approaches, such
as regression modelling, do not include latent variables at all. Other
approaches contain latent variables but these are estimated only
from data values, so that the use of latent variables in these meth-
ods does not escape the limits of the data. The objectivity of data-
driven approaches holds only so far as the prediction of observed
values really serves the needs of users. When this is not the case,
erroneous results may follow. In this paper, we show some exam-
ples of these errors and how they are avoided by appropriate and
rigorous use of domain knowledge.

We propose a pragmatic methodology to develop Bayesian
network (BN) models with latent variables. Our method integrates
domain expertise with the available data to develop and refine the
model systematically through a series of expert reviews. We illus-
trate the application and results of this method with a clinical case
study of a problem for which purely data-driven approaches have
been tried but have not been considered to be successful by
clinicians. Our case study shows some possible reasons for these
past failures. It is beyond of the scope of the paper to provide full
details of the developed model, but the details can be found at
the ATC BN website [3].
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The remainder of this paper is as follows: Section 2 presents the
overview of our methodology. The case study is introduced in Sec-
tion 3 and developed further in Sections 4 (learning and review)
and 5 (model refinement). We present our conclusion in Section 6.

2. Method overview

The limitations of data for making predictions useful to a deci-
sion-maker can be summarised in three points:

1. Measurement errors: a dataset contains measurements of
variables, but measurement errors mean that the true state
of each variable differs from the measured data. In some
domains, including clinical diagnosis, this introduces sig-
nificant uncertainty about the true value, so that a data-dri-
ven model cannot accurately predict the underlying state
even if it can accurately predict the associated measure-
ment values.

2. Sub-optimal decisions: the objective of a decision-support
model is to enable a decision-maker to determine the opti-
mal decisions given the observed situation. A dataset may
contain a ‘decision’ variable, that is, one that reflects the
decision made (e.g. a treatment given by a clinician). A
model that predicts the value of a decision variable can
be useful if all the past decision-makers had similar utilities
and they were completely rational in evaluating utilities
with their underlying uncertainties. However, there is usu-
ally no information about the utilities involved in past deci-
sions, and the data may have records of some decisions that
were incorrect at the time or, although correct at the time,
were made on outdated understanding. A model that pre-
dicts the value of a decision variable is therefore limited
in its performance even if the prediction is highly accurate.
Moreover, a model can only be used for ‘what if’ analysis –
exploring the consequences of decision alternatives – if it is
causal; choosing one of the decision alternatives erases the
factors that influenced past decisions [4]. Although these
problems are well known, models that are developed to
fit past decisions are common in scientific literature (see
Section 3.1).

3. Causes of outcomes: an ‘outcome’ variable records what
happened. But outcomes can have many causes, only some
of which may be recorded in the dataset (for example, in
medical applications not all interventions and treatments
are recorded). A prediction based on only some causes
may be useful – the missing causes simply add uncertainty
– but understanding of the scope of the causes included is
important to the correct application of the model. A purely
data-driven approach does not resolve this problem; only
an expert can detect if the data omits known causes of
the outcome. If omitted causes can be identified, this infor-
mation can be used either to improve the model or to clar-
ify its scope and to assess its performance within the scope
of the causes modelled.

The main aim of our method (illustrated in the flow diagram in
Fig. 1) is to overcome these limitations. We show how to develop
BNs that predict and reason with latent variables using a training
dataset including measurements of these variables, but not includ-
ing their true state. Domain expertise is used both at the start of
the development to discover latent variables and then later to
refine the model in a series of expert reviews; it is during these
reviews that discrepancies between knowledge and data are re-
vealed. Expert knowledge can be used in various degrees when
deriving the structure of a BN [5]. In our method, the structure of

the BN is developed with domain experts by using small BN frag-
ments for commonly occurring reasoning types as building-blocks
to form the complete BN structure [6]. The advantage of experts
deriving the model’s structure, rather than learning it from data,
is to ensure causal coherence: latent variables influence measure-
ments and decision variables influence outcomes. Hybrid ap-
proaches that combine expert knowledge and data can also be
used at this stage for deriving the BN structure [7,8]. Moreover,
structure learning methods can be used as a complementary ap-
proach to evaluate and refine a BN structure developed by experts
[9]. Of course, all causal assumptions need to be supported by the
best available evidence, such as experimental results or expert
consensus. Lack of knowledge of true causal relationship is a prob-
lem and affects both expert and data-led modelling (aside from the
limited capabilities of algorithms such as inductive causation (IC)
[10]) alike. Equally, not all causal relationships are uncertain: it
is clear that an object’s temperature causes the thermometer read-
ing rather than the other way around.

The next step is to label the latent variables in the training data-
set, overcoming the problem that their values are unknown. The
first label is derived from measurement data using deterministic
(but not necessarily complete) rules defined by domain experts;
the second uses data clustering. The experts’ rules can be of any
form, but are typically derived from current practice. For example,
if the related measurements are continuous, these rules are thresh-
old values for the measurements. For clustering, we use the
standard Expectation–Maximisation (EM) for BNs with known
structure [11]. EM is an iterative algorithm that is used for learning
the parameters of a BN from a dataset with missing values. Each
iteration of EM has two steps: the E-step completes the data by cal-
culating the expected values of unobservable variables based on
the current set of parameters; the M-step learns a new set of
parameters from the maximum likelihood estimate of this com-
pleted data. When EM is used for parameter learning, the M-step
of the final iteration calculates the BN parameters. When it is used
for clustering, the unobserved variables are labelled according to
the values in the E-step of the final iteration. In our method, all
of the values of the unobserved variable are missing from the data-
set and we are using EM for clustering the unobserved values.
Although EM can also be used for structure learning [12,13] this
is not required in our method as the BN structure is developed with
domain experts. Extensions of EM that builds upon the information
bottleneck [14], variational Bayesian [15] and hierarchical [16]
frameworks have been proposed for learning latent variables.
Van der Gaag et al. [17] presents a similar approach to labelling
with expert rules where they represent combinations of multiple
observations with latent variables.

We now have two labels for each latent variable: one from clin-
ical measurements and the experts’ rules, the other from EM clus-
tering. A final label is achieved by combining the two labels in
cases where the labels are the same and by expert review of cases
where there is a difference between the two labelling methods. We
prepare a list of cases where the labels differ. Domain experts then
decide the final label for each data record in this list. The experts
can review other data including information that is not machine-
readable and cite relevant research to support this decision. We
also include a random subset of cases that were labelled consis-
tently in the review to assess the experts’ consistency with the
labelling by measurements and clustering approaches. This combi-
nation of expert review and data has a number of advantages. It
allows for the possibility of errors in measurement, and it uses
the experts efficiently. Expert review is a costly resource and using
it for every single case in the data is usually not feasible, especially
if the dataset is large. Therefore, our method aims to use it only for
ambiguous cases, where the labels from measurements conflict
with the results of the clustering on our data.
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