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a b s t r a c t

A new phenomenological hybrid chain network model for polymer based materials has been developed.
At the microscopic scale, the “beta function for growth rate”, as introduced by Yin et al. [30,29] for
describing growth, has been taken to describe the sigmoidal shape of the stiffness rise to the breaking
point at high strains of a single chain molecule. In this paper the model is redefined and used to model an
entropy-elastic (rubber elastic) behaviour in relatively small strain regimes. In order to capture large
strain regimes while maintaining the overall sigmoidal shape of the stiffness rise the model is extended
by an energy-elastic term. On the macroscopic scale, the network of polymer chains are represented by
isotropic three-chain and eight-chain network models that are linked together by a weighting function
for describing the transition between them.

The proposed model has been calibrated for different polymers simultaneously in the extensional
range. It successfully predicted the experimental findings from literature, Treloar [21,22], other material
data for Spider silk reported by Denny [4] and data of natural rubber compounds of different hardnesses
reported by Koshal [12].

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The realistic description of rubberlike materials still represents a
challenge. Many of these materials are presumed to exhibit purely
J-shaped stressestrain behaviour, which results from a progressive
recruitment and alignment of polymer chains stress. Measure-
ments, however, show that stressestrain curves and corresponding
stiffness rise of single chains andmulti-chain polymer networks are
sigmoidal in shape (S-shaped). As the load rises, a chain with an
initial stiffness unfolds and approaches first its yield point before
strain hardening to a maximum stiffness. Further increase in load
will take it to its breaking point that is linked to a gradual reduction
of its stiffness. Examples of materials with a sigmoidal stressestrain
curve are textile materials such as synthetic felt composed of
entangled polyester filaments [10] or natural fibres such as spider
silk and other polyamide fibres [11].

The outline of the paper is the following. A review of some basic
material models for polymers is presented in Section 2. Two growth
models are then presented that will be used for the derivation of

the new model presented in Section 3. The results of the model
evaluations are presented in Section 4 and conclusions are given in
Section 5.

2. Material models

Subsection 2.1 starts with the description of a general model
that can be used to describe nonlinear mechanical behaviour of
incompressible isotropic elastic materials. This is followed by a
discussion of the characteristics of the classical wormlike chain
model in the context of the micromechanics of single polymer
chains and its implementation in network models. Details of the
development of a new wormlike chain model that produces
asymmetrical uni-modal curves and the implementation of this
model into network models are presented. These network models
will finally be combined into a hybrid model. Two growth models
are then presented that will be used for the derivation of the new
polymer model presented in Section 3.

2.1. Modelling incompressible isotropic elastic materials

An incompressible and isotropic material in the virgin state can
be described with the nonlinear material law from Refs. [19,20].
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sþ pI ¼ 41Bþ 42B
2 (1)

where s is the Cauchy stress tensor, p is an undetermined pressure,
I is the identity tensor, and B stands for the left CauchyeGreen
deformation tensor. The scalar material response functions 41 and
42

41 ¼ 2
vJ

vJ1
and 42 ¼ 4

vJ

vJ2
(2)

can be determined by an Helmholtz free-energy density function per
unit reference volume J. They have to satisfy the integrability
condition

v41
vJ2

¼ 1
2
v42
vJ1

(3)

that is always satisfied, if 41 is only a function of J1, and if 42 is only
a function of J2. The alternative invariants are defined as the trace
of the left CauchyeGreen deformation tensor B ¼ FFT with F being
the deformation gradient

J1 ¼ I1 ¼ trB and J2 ¼ I21 � 2I2 ¼ trB2 (4)

and depend themselves on the first and second principal stretch
invariants I1 and I2. Due to the incompressibility condition the third
principal stretch invariant is I3 ¼ detB ¼ 1 and can therefore be
neglected. Furthermore, the strain energy density J has been
assumed to be a separable function in terms of the invariants J1
and J2

J ¼ J1ðJ1Þ|fflfflfflfflffl{zfflfflfflfflffl}
entropy�elastic term

þ J2ðJ2Þ|fflfflfflfflffl{zfflfflfflfflffl}
energy�elastic term

(5)

The first term can be associated with a very soft material
behaviour (entropy-elastic term) and the second term with the
stiffening of the material that occurs at higher deformations (en-
ergy-elastic term). In order to describe different deformation
modes, new invariants ~l1 and ~l2 have been introduced that are the
solutions of the cubic equations

~l
3
1 � J1

~l1 þ 2 ¼ 0; ~l
6
2 � J2

~l
2
2 þ 2 ¼ 0 (6)

derived from the from the invariants J1 and J2 in the uniaxial
deformation. The relations for ~l1 ¼ ~l1ðJ1Þ and ~l2 ¼ ~l2ðJ2Þ always
have a real value and can be expressed in the tensile range with
Cardano's formula. For the simple tension ~l1 ¼ ~l2 ¼ l.
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This model has been originally developed for predicting the
mechanical behaviour of materials for tensile experiments. It can
easily be extended to incorporate the complete range of a defor-
mation process that is needed in order to characterize both tensile
and compressive behaviour of materials made from polymers. Next
sectionwill describe the micromechanics of a single polymer chain.
This is important for understanding the terminology and the
implementations of chain models into network environments in
order to describe multi-axial stress states.

2.2. Micromechanics of a single polymer chain

A single polymer chain with an actual end-to-end length rch is
assumed to consist of N independently oriented links of equal
segment size [, the so-called Kuhn statistical segment length, so that
L¼N[. Therein, L is the contour length that is themaximum possible
end-to-end distance of a fully extended chain, by which 0 < rch � L.
When N is large enough, the average root-mean-square end-to-end
length for an undeformed chain is r0 ¼

ffiffiffiffi
N

p
[ ¼ ffiffiffiffiffi

L[
p

[14e16]. The
deformation of the chain can be described either by the chain
stretch lch ¼ rch/r0 or the relative chain stretch lrch ¼ rch=L ¼ lch=

ffiffiffiffi
N

p
,

with lrch2½N�1=2; 1�.

2.2.1. The wormlike chain model
The KratkyePorod or discrete wormlike chain (WLC) model [13]

treats DNA as a semi-flexible polymer chain that is smoothly curved
due to thermal fluctuations. Since a direct analytical solution for the
force-extension relationship is not available, Marko and Siggia
[3,18] introduced an approximation formula

Fch ¼ kBT
Ap

 
rch
L

þ 1

4
�
1� rch

L

�2 � 1
4

!
(8)

where Fc ¼ kBT =Ap is the characteristic force, kB ¼ 1.381�10�23(J/
K ) Boltzmann's constant, T the absolute temperature and Ap the
bending persistence length, with [ � Ap � L, this is why the WLC
model is also called the persistent chain model. For the WLC, the
end-to-end mean-squared length is r0 ¼

ffiffiffiffiffiffiffiffi
2AL

p
, and thus [ ¼ 2Ap

[7,18]. The disadvantage of the classical WLC model is that as rch
approaches L, the axial force tends to grow to infinity.

The WLC model is a one-dimensional model based on statistical
mechanics able to describe the entropy-elastic behaviour of bio-
materials. Unfortunately, this model produces purely J-shaped
stressestrain curves that do not correspond with experimental
results. The stressestrain curves of single chains are sigmoidal in
shape.

2.3. Network models

The following sub-sections give a brief overview of widely used
entropy elastic network models, namely, the three-chain model
and the eight-chain model in which the WLC is used as a building
block. They have been proposed in the literature for modelling
rubber elasticity. These models will be used to develop the
sigmoidal function model that is proposed in the next section.

2.3.1. The three-chain network model
The three-chain model, originally proposed in Refs. [9,24] is a

separable and symmetric function assuming a network that can be
replaced by three independent sets of non-Gaussian chains, which
are according to Fig. 1 (a) parallel to the three principal axes of
deformation x, y and z. This model only captures the principle strain
directions. In Refs. [5,6] a three-chain approximation has been
introduced for the strain energy j of a Gaussian chain. They pro-
posed to express j as a separable function in terms of principle
stretches li (i ¼ 1, 2, 3)

j ¼
X3
i¼1

ji ¼ jðl1Þ þ jðl2Þ þ jðl3Þ: (9)

The separable form of Eq. (9) illustrates the close relationship
between the three-chain approximation and the hypothesis by
Valanis and Landel [23]. However, the three-chain model is not
capable of picking up strain hardening effects. In order to increase
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