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This work presents a protocol driven force field algorithm, used to create multiscale corre-
lated dense sphere packings. It was developed as part of a tool chain for the reconstruction 
of realistic multiscale porous rock samples. It overcomes limitations of Monte-Carlo or de-
position based approaches, that are quite common in this field and were used previously. 
The new algorithm can create large, low porosity sphere packings with radius distributions 
covering two decades. Highly correlated structures that model pore clogging and sedimen-
tation can be generated. To achieve this, an adequate force field and proper termination 
strategies are necessary. By changing the algorithm parameters in a controlled way during 
the simulation, a complex protocol driven process can be established. The implementation 
of the algorithm targets large parallel computer platforms to perform simulations with 
more than 10 million spheres. This article includes an application of the algorithm used 
to generate a highly polydisperse sphere packing with roughly 106 spheres and radii from 
1 to 100 μm. The continuum description of this packing is discretized at resolutions from 
0.25 to 1 μm and investigated using geometric and statistical characterizations and results 
from Lattice-Boltzmann flow simulations. These resolution dependent results affirm that 
reliable, predictive calculations for multiscale porous microstructures depend on the avail-
ability of large realistic continuum models. To obtain such models the algorithm presented 
herein can be used as a starting point.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The demand for a new sphere packing algorithm arose from the task of generating large 3D models for multiscale porous 
rocks from experimental X-ray, synchrotron or optical images [1–4]. Therein sphere packings are the starting point for the 
model reconstruction and the following analysis of the discretized data-set. The available implementation [3] exhibited 
limitations when used for large systems with more than 10 million spheres or multiscale packings with size distributions 
covering more than one decade. Therefore a new, more flexible and efficient, algorithm using a different methodology was 
sought after. Various approaches exist like Monte-Carlo (MC), rejection based, algorithms that try to generate a valid pack-
ing by repeatedly inserting objects into an existing packing [3]. Also there exist Monte-Carlo algorithms that start from a 
random packing and repeatedly modify the packing following a stochastic rule set to generate a desired target packing. 
Some hard sphere packing algorithms [5,6] combine a loose, initially MC generated, packing with a compression (boundary 
shrinking) technique. So called “force based” approaches [7] use predefined interactions between the spheres to modify a 
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packing after starting from a random or lattice based packing. These interaction based algorithms can be discrete (time-
stepping) or continuous (event-based) in time and either discrete in space, i.e. use a spatial lattice, or continuous in space. 
The algorithm presented here is closest related to the lineage of time-discrete continuous-space numerical methods called 
“discrete-element-method” (DEM) [8–10] in granular systems or “molecular dynamics” [11,5] in chemical and biological 
systems. There exist many commercial [12–14], free [15,16] or academic [17] DEM implementations. These DEM packages 
mainly focus on simulating physical processes in granular systems, like granular flow, particle sedimentation, material wear 
and fracturing. The implementation presented herein focuses on the original target of creating large sphere packings with 
different sphere types, and constraints like given size distributions, maximal allowed overlaps or other spacial correlations. 
Compared to the DEM implementations mentioned above, this allows the usage of less accurate numerical schemes, a more 
flexible force-field and a protocol driven behavior that enables the algorithms to cope with the large sphere numbers that 
are necessary to create laboratory sized highly polydisperse samples. In sections 2 and 3 of the article the algorithm and its 
implementation are discussed. Section 4 presents an application that generates a multiscale sphere packing using a complex 
simulation protocol. Various characterizations and calculations for the discretized date set of this packing are carried out in 
Section 5.

2. Force field algorithm

2.1. Overview

A time-discrete, continuous space, soft-sphere force field simulation is used to generate the sphere packing. The discrete 
simulation steps are s ∈ [1, . . . , smax]. The bounded region � ⊂ R

3 contains the spheres si , i = 1, . . . , N with spatial positions 
�xs

i ∈ �, radii rs
i ∈R, masses mi ∈ R and types gi ∈ {1, . . . Ng}. For each sphere pair (si, s j) a symmetric overlap

σ s
i j = rs

i + rs
j − dxs

i j

rs
i + rs

j − |rs
i − rs

j|
with dxs

i j = |�xs
i − �xs

j | is defined. A maximal allowed overlap σ max
gi

∈ R is specified for each sphere type. Every step a force 
acting on each sphere is calculated, depending on position, type and interaction constants. Then the spheres are propagated 
to new positions using a damped velocity-Verlet integrator as the discretized law of motion. A sphere si is considered to 
be converged, if 0 < maxi �= j(σi j) ≤ σ max

gi
. The system is said to have converged at a final step s f ∈ N if this holds for all 

spheres. A converged system represents a valid packing.

2.2. System setup and initialization

Either the total number of spheres N or the point density must be specified at startup. The system is then populated 
uniformly with spheres at random positions �x0

i . For each sphere type a size distribution must be specified to generate the 
initial radii r0

i of the spheres. This distribution can be:

• Discrete P (r0
i = r) = ∑

j δ(r − r j)P ′(r j) with δ the Dirac delta function. A list of allowed r j ∈ R and associated P ′(r j) ∈
[0, 1] must be specified with 

∑
j P ′(r j) = 1.

• Constant and continuous, with upper and lower bound, P (r0
i = r) = 1/(rmax

gi
− rmin

gi
). Here only the two values rmin

gi
∈ R

and rmax
gi

∈ R for each sphere type must be specified.

• Exponential and continuous, P (r0
i = r) = α exp(−αr)

(exp(−αrmin
gi

)−exp(−αrmax
gi

))
with given rmin

gi
, rmax

gi
∈ R for each sphere type, and 

with α ∈ R shared among all sphere types.

Once the system is initialized with spheres the simulation iterates between force-, propagation, and termination-steps until 
it reaches a termination condition, i.e. all spheres are converged, or another termination condition applies.

2.3. Force field and force step

Within this step the force on each sphere is calculated as the sum of pairwise interaction forces

�f s
i =

∑
j∈W s−1

i

�f i j(dxs−1
i j , rs−1

i , rs−1
j ;ki)

where ki is an interaction constant that needs to be specified and W s
i is the set of interaction partners for the sphere si . 

The sets W s
i , used in the time step s, are updated in a previous propagation step, but not necessarily the step s − 1, 

see section 3.3. The maximal allowed overlap σ max
gi

is connected to a minimal acceptable distance dxs−1
min,i j = rs−1
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j −
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j |). Also there is a maximal allowed distance dxs−1
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j for an isolated pair to 
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