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The objective of this work is to present a conservative coupling method between an 
inviscid compressible fluid and a deformable structure undergoing large displacements. The 
coupling method combines a cut-cell Finite Volume method, which is exactly conservative 
in the fluid, and a symplectic Discrete Element method for the deformable structure. 
A time semi-implicit approach is used for the computation of momentum and energy 
transfer between fluid and solid, the transfer being exactly balanced. The coupling 
method is exactly mass-conservative (up to round-off errors in the geometry of cut-
cells) and exhibits numerically a long-time energy-preservation for the coupled system. 
The coupling method also exhibits consistency properties, such as conservation of uniform 
movement of both fluid and solid, absence of numerical roughness on a straight boundary, 
and preservation of a constant fluid state around a wall having tangential deformation 
velocity. The performance of the method is assessed on test cases involving shocked 
fluid flows interacting with two and three-dimensional deformable solids undergoing large 
displacements.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fluid–structure interaction phenomena occur in many fields, such as aeronautics, civil engineering, energetics, biology, 
and in the military and safety domains. In this context for instance, the effects of an explosion on a building involve 
complex non-linear phenomena (shock waves, cracking, fragmentation, etc.) [1,2], and the characteristic time scales of these 
phenomena are extremely short. The driving effect of the fluid–structure interaction is the fluid overpressure, and viscous 
effects play a lesser role. With an eye toward these applications, we consider an inviscid compressible flow with shock 
waves interacting with a deformable solid object.

Numerical methods for fluid–structure interaction can be broadly categorized into monolithic and partitioned methods. 
In monolithic (Eulerian [3,4] or Lagrangian [5,6]) methods, the fluid and the solid equations are solved simultaneously 
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at each time step. However, in many numerical schemes, the fluid is described in Eulerian formulation and the solid in 
Lagrangian formulation. This is possible in partitioned approaches where the fluid and the solid equations are solved sep-
arately, and an interface module is used to exchange information between the fluid and the solid solvers to enforce the 
dynamic boundary conditions at their common interface. Two main types of methods have been developed in this context: 
Arbitrary Lagrangian–Eulerian (ALE) methods [7,8] and fictitious domain methods [9–19]. The ALE method hinges on a mesh 
fitting the solid boundary, and therefore requires remeshing of the fluid domain when the solid goes through large displace-
ments and topological changes due to fragmentation. Instead, fictitious domain methods, as those considered herein, work 
on a fixed fluid grid to which the solid is superimposed, and additional terms are introduced in the fluid formulation to 
impose the boundary conditions at the fluid–solid interface.

Conservative cut-cell Finite Volume methods for compressible fluid–structure interaction have been proposed by 
Noh [19]. Therein, a Lagrangian method for the solid is coupled with an Eulerian Finite Volume method for the com-
pressible flow satisfying mass, momentum, and energy conservation in the fluid. Such methods have been used in a number 
of applications [10,11,14,15,19,20]. A coupling method between an inviscid compressible fluid and a rigid body undergoing 
large displacements has been developed in [21,22] using a cut-cell Finite Volume method. The coupling method is conser-
vative in the sense that (i) mass, momentum, and energy conservation in the fluid is achieved by the cut-cell Finite Volume 
method as in [19], and (ii) the momentum and energy exchange between the fluid and the solid is balanced. As a result, 
the system is exactly conservative, up to round-off errors in the geometry of cut-cells. Moreover, the coupling method ex-
hibits interesting consistency properties, such as conservation of uniform movement of both fluid and solid, and absence of 
numerical roughness on a straight boundary.

The main purpose of this work is to develop a three-dimensional conservative coupling method between a compressible 
inviscid fluid and a deformable solid undergoing large displacements. By conservative, we mean that properties (i) and (ii) 
above are satisfied, as in [21,22], and additionally that a symplectic scheme is used for the Lagrangian solid ensuring the 
conservation of a discrete energy (which is a close approximation of the physical energy). As a result, the coupled discrete 
system is not exactly energy-conservative, but we show numerically that our strategy yields long-time energy-preservation 
for the coupled system. Furthermore, as in [21,22], the Finite Volume method for the fluid is high-order in smooth flow 
regions and away from the solid boundary, while it is first-order near the shocks (due to the flux limiters) and in the 
vicinity of the solid boundary. Consequently, the coupling method is overall first-order accurate. Still, the use of a high-order 
method in smooth regions is useful to limit numerical diffusion in the fluid, as discussed in [23]. In any case, the coupling 
method, which is the focus of this work, is independent of the choice of the fluid fluxes.

While the core of the present method hinges on the techniques of [22] for a rigid solid, many new aspects have to be 
addressed. A reconstruction of the solid boundary around the solid assembly is needed since the solid deforms through the 
interaction with the fluid. Furthermore, a time semi-implicit scheme is introduced for the momentum and energy exchange, 
so as to take into account the deformation of the solid boundary during the time step. The advantage of this scheme with 
respect to an explicit one is to achieve additional consistency properties, such as the absence of pressure oscillations near a 
solid wall having only tangential deformation. The time semi-implicit scheme evaluates the fluid fluxes as well as the solid 
forces and torques only once per time step, which is important for computational efficiency of the scheme. Additionally, we 
prove that the time semi-implicit scheme converges with geometric rate under a CFL condition, which, under the assumption 
that the solid density is larger than the fluid density, is less restrictive than the fluid CFL condition.

The paper is organized as follows: Section 2 briefly describes the basic ingredients (which are common with [22]): the 
fluid and solid discretization methods and the cut-cell Finite Volume method. Section 3 presents the conservative coupling 
method based on the time semi-implicit procedure. Section 4 discusses several properties of the coupling method. Section 5
presents numerical results on strong fluid discontinuities interacting with two and three-dimensional deformable solids 
undergoing large displacements. Section 6 contains concluding remarks. Finally, Appendix A provides some background on 
the Discrete Element method used to discretize the solid, and Appendix B contains the convergence proof for the time 
semi-implicit scheme.

2. Basic ingredients

2.1. Fluid discretization

For inviscid compressible flow, the fluid state is governed by the Euler equations, which can be written in conservative 
form as

∂
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U + ∂

∂x
F (U ) + ∂

∂ y
G(U ) + ∂

∂z
H(U ) = 0, (1)

where U = (ρ,ρu,ρv,ρw,ρE)t is the conservative variable vector and F (U ), G(U ), and H(U ) indicate the inviscid fluxes
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